“微信扫一扫”进入考试题库练习及模拟考试
参考答案:155
解析:
由等比数列的性质可知
由条件可知
所以
所以
故答案为:155
参考答案:因为 \(f\left( x \right) = \frac{{{4^x}}}{{{4^x} + 2}}\),所以 \(f\left( {1 - x} \right) = \frac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} = \frac{4}{{4 + 2 \times {4^x}}} = \frac{2}{{{4^x} + 2}}\),所以 \(f\left( x \right) + f\left( {1 - x} \right) = 1\).令 \(S = f\left( {\frac{1}{{2011}}} \right) + f\left( {\frac{2}{{2011}}} \right) + \cdot \cdot \cdot + f\left( {\frac{{2009}}{{2011}}} \right) + f\left( {\frac{{2010}}{{2011}}} \right)\),倒写得 \(S = f\left( {\frac{{2010}}{{2011}}} \right) + f\left( {\frac{{2009}}{{2011}}} \right) + \cdot \cdot \cdot + f\left( {\frac{2}{{2011}}} \right) + f\left( {\frac{1}{{2011}}} \right)\).两式相加得 \(2S = 2010\),故 \(S = 1005\).
第183题
求证:数列
参考答案:∵\(\frac{{{b_{n + 1}}}}{{{b_n}}} = \frac{{{a_{n + 2}} + {a_{n + 1}}}}{{{a_{n + 1}} + {a_n}}} = \frac{{{a_{n + 1}} + 2{a_n} + {a_{n + 1}}}}{{{a_{n + 1}} + {a_n}}} = \frac{{2\left( {{a_{n + 1}} + {a_n}} \right)}}{{{a_{n + 1}} + {a_n}}} = 2\),且 \({b_1} = {a_1} + {a_2} = 2 \ne 0\),∴ \(\left\{ {{b_n}} \right\}\) 是以2为首项,2为公比的等比数列;
第184题
求数列
参考答案:由(1)知,\({b_n} = {2^n}\),则\({b_n} + 2n = {2^n} + 2n\),令 \(\left\{ {{b_n} + 2n} \right\}\) 的前\(n\)项和为\({S_n}\),则 \({S_n} = \frac{{2 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} + \frac{{n\left( {2 + 2n} \right)}}{2} = {2^{n + 1}} - 2 + {n^2} + n = {2^{n + 1}} + {n^2} + n - 2\).
A.\(\left\{ {n{a_n}} \right\}\) 是等比数列
B.\(\left\{ {\frac{{{a_n}}}{n}} \right\}\) 是等比数列
C.\({a_n} = n \cdot {2^n}\)
D.\({S_n} = \left( {n - 1} \right) \cdot {2^n} + 2\)
参考答案:BC
解析:
由题意得
两式相减得:
故选:BC
第186题
求证:
参考答案:由 \({S_{n + 1}} = {S_n} + 3{a_n} - {2^n}\),得 \({a_{n + 1}} = 3{a_n} - {2^n}\),
∴\({a_2} = 3{a_1} - 2\),
又 ∵\({a_2} + {S_2} = 31\),∴\({a_2} + {a_1} + {a_2} = 2{a_2} + {a_1} = 2\left( {3{a_1} - 2} \right) + {a_1} = 7{a_1} - 4 = 31\),
∴\({a}_{1}=5\),∴\({a_1} - {2^1} = 3 \ne 0\),
∵\(\frac{{{a_{n + 1}} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3{a_n} - {2^n} - {2^{n + 1}}}}{{{a_n} - {2^n}}} = \frac{{3\left( {{a_n} - {2^n}} \right)}}{{{a_n} - {2^n}}} = 3\),
∴\(\left\{ {{a_n} - {2^n}} \right\}\) 是首项为 \({a_1} - {2^1} = 3\),公比为3的等比数列;
第187题
求数列
参考答案:由(1)可知 \({a_n} - {2^n} = {3^n}\),即 \({a_n} = {2^n} + {3^n}\),
∴\({S_n} = \frac{{2\left( {1 - {2^n}} \right)}}{{1 - 2}} + \frac{{3\left( {1 - {3^n}} \right)}}{{1 - 3}} = {2^{n + 1}} + \frac{{{3^{n + 1}}}}{2} - \frac{7}{2}\).
第188题
求数列
参考答案:设 \(\left\{ {{a_n}} \right\}\) 的公差为\(d\),\(\left\{ {{b_n}} \right\}\) 的公比为\(q\),\({b_1} = 2\),\({a_1} = 1\),
由题意可得:\(\left\{ {\begin{array}{*{20}{l}} {2q = 1 + d + 1} \\ {2{q^2} = 1 + 3d + 1} \end{array}} \right.\),整理可得:\({q^2} - 3q + 2 = 0\),
解得:\(\left\{ {\begin{array}{*{20}{l}} {q = 2} \\ {d = 2} \end{array}} \right.\) 或 \(\left\{ {\begin{array}{*{20}{l}} {q = 1} \\ {d = 0} \end{array}} \right.\)(舍)
所以 \({a_n} = 1 + \left( {n - 1} \right) \times 2 = 2n - 1\),\({b_n} = 2 \cdot {2^{n - 1}} = {2^n}\);
参考答案:因为 \(\frac{{{a_n}}}{{{b_n}}} = \frac{{2n - 1}}{{{2^n}}}\),
则 \({T_n} = \frac{1}{2} + \frac{3}{{{2^2}}} + \frac{5}{{{2^3}}} + \cdots + \frac{{2n - 1}}{{{2^n}}}\),
∴\(\frac{1}{2}{T_n} = \frac{1}{{{2^2}}} + \frac{3}{{{2^3}}} + \frac{5}{{{2^4}}} + \cdots + \frac{{2n - 1}}{{{2^{n + 1}}}}\)两式相减得 \(\frac{1}{2}{T_n} = \frac{1}{2} + 2\left( {\frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{2^4}}} + \cdots + \frac{1}{{{2^n}}}} \right) - \frac{{2n - 1}}{{{2^{n + 1}}}} = \frac{3}{2} - \frac{{2n + 3}}{{{2^{n + 1}}}}\)
所以 \({T_n} = 3 - \frac{{2n + 3}}{{{2^n}}}\)
显然 \({T_n} < 3\),且 \({T_{n + 1}} - {T_n} = \frac{{2n + 1}}{{{2^{n + 1}}}} > 0\),即 \(\left\{ {{T_n}} \right\}\) 为递增数列,
\({T_1} = \frac{1}{2} < 1\),\(1 < {T_2} = \frac{5}{4} < 2\),\(1 < {T_3} = \frac{{15}}{8} < 2\),\({T_4} = \frac{{37}}{{16}} > 2\),所以 \(\left\langle {{T_1}} \right\rangle = 0\),\(\left\langle {{T_2}} \right\rangle = \left\langle {{T_3}} \right\rangle = 1\),\(n \geqslant 4\) 时,\(\left\langle {{T_n}} \right\rangle = 2\),
所以 \(\left\langle {{T_1}} \right\rangle + \left\langle {{T_2}} \right\rangle + \cdots + \left\langle {{T_{10}}} \right\rangle = 16\).
第190题
求证:数列
参考答案:当 \(n \geqslant 2\) 时,\({a_n} = {S_n} - {S_{n - 1}} = \frac{{{n^2}}}{{{n^2} + 1}}\);
经检验:\({a_1} = \frac{1}{2}\) 也满足 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 的通项公式为 \({a_n} = \frac{{{n^2}}}{{{n^2} + 1}}\left( {n \in {N^*}} \right)\),
\(\therefore {a_{n + 1}} - {a_n}{\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}}}{{{{\left( {n + 1} \right)}^2} + 1}} - \frac{{{n^2}}}{{{n^2} + 1}}\)\({\rm{ = }}\frac{{{{\left( {n + 1} \right)}^2}\left( {{n^2} + 1} \right) - {n^2}\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} = \frac{{2n + 1}}{{\left[ {{{\left( {n + 1} \right)}^2} + 1} \right]\left( {{n^2} + 1} \right)}} > 0\),
\(\therefore {a_n} < {a_{n + 1}}\),
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 是递增数列;
参考答案:数列 \(\left\{ {{a_n}} \right\}\) 有界.
理由如下:\(\because \left| {{a_n}} \right| = \left| {\frac{{{n^2}}}{{{n^2} + 1}}} \right| = \left| {1 - \frac{1}{{{n^2} + 1}}} \right| < 1\),
即 \(\left| {{a_n}} \right| < 1\) 恒成立,
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 有界.
第192题
求数列
参考答案:当 \(n = 1\) 时,\({S_1} = 14 - 1 = 13\),
即 \({a_1} = 13\),当 \(n \geqslant 2\) 时,
\({a_n} = {S_n} - {S_{n - 1}}
= 14n - {n^2} - [14(n - 1) - {(n - 1)^2}] = 15 - 2n\),
\(n = 1\) 时,
满足上式,所以 \({a_n} = 15 - 2n\)
第193题
求数列
参考答案:由 \({a_n} \geqslant 0\) 得 \(n \leqslant \frac{{15}}{2}\),而 \(n\in {N}_{+}\),
所以当 \(1 \leqslant n \leqslant 7\) 时,\({a_n} \geqslant 0\),当 \(n \geqslant 8\) 时,\({a_n} < 0\),
当 \(1 \leqslant n \leqslant 7\) 时,\({T_n} = \left| {{a_1}} \right| + \left| {{a_2}} \right| + \cdot \cdot \cdot + \left| {{a_n}} \right| = {a_1} + {a_2} + \cdot \cdot \cdot + {a_n} = {S_n} = 14n - {n^2}\),
当 \(n \geqslant 8\) 时,\({T_n} = \left| {{a_1}} \right| + \left| {{a_2}} \right| + \cdot \cdot \cdot + \left| {{a_7}} \right| + \left| {{a_8}} \right| + \cdot \cdot \cdot + \left| {{a_n}} \right|\)
\( = {a_1} + {a_2} + \cdot \cdot \cdot + {a_7} - ({a_8} + \cdot \cdot \cdot + {a_n})\)
\( = {S_7} - ({S_n} - {S_7})\)
\( = 2{S_7} - {S_n}\)
\( = {n^2} - 14n + 98\),
所以 \({T_n} = \begin{cases} 14n - {n^2},1 \leqslant n \leqslant 7,n \in {N_ + } \\ {n^2} - 14n + 98,n \geqslant 8,n \in {N_ + } \\ \end{cases}\)
第194题
求数列
参考答案:解:设公差为 \(d > 0\),公比为 \(q\),由题,因为 \(\left\{ {\begin{array}{*{20}{l}}
{{a_2} = {b_2}} \\
{{a_3} + 1 = {b_3}}
\end{array}} \right.\),则 \(\left\{ {\begin{array}{*{20}{l}}
{1 + d = 1 \cdot q} \\
{1 + 2d + 1 = 1 \cdot {q^2}}
\end{array}} \right.\),解得 \(\left\{ {\begin{array}{*{20}{l}}
{d = 1} \\
{q = 2}
\end{array}} \right.\),所以 \({a_n} = 1 + \left( {n - 1} \right) \times 1 = n\),\({b_n} = 1 \times {2^{n - 1}} = {2^{n - 1}}\).
参考答案:解:由(1),则 \({T_n} = \frac{{1 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} = {2^n} - 1\),设 \({c_n} = {a_n} \cdot {T_n} = n \cdot \left( {{2^n} - 1} \right)\),\({S_n}\) 为数列 \(\left\{ {{c_n}} \right\}\) 的前 \(n\) 项和,所以 \({S_n} = 1 \times \left( {{2^1} - 1} \right) + 2 \times \left( {{2^2} - 1} \right) + 3 \times \left( {{2^3} - 1} \right) + \cdots + n \cdot \left( {{2^n} - 1} \right)\)\( = \left( {1 \times {2^1} + 2 \times {2^2} + 3 \times {2^3} + \cdots + n \cdot {2^n}} \right) - \left( {1 + 2 + 3 + \cdots + n} \right)\),则 \(2{S_n} = \left( {1 \times {2^2} + 2 \times {2^3} + 3 \times {2^4} + \cdots + n \cdot {2^{n + 1}}} \right) - 2 \times \left( {1 + 2 + 3 \cdots + n} \right)\),所以 \(2{S_n} - {S_n} = - \left( {{2^1} + {2^2} + {2^3} + \cdots + {2^n}} \right) + n \cdot {2^{n + 1}} - \left( {1 + 2 + 3 + \cdots + n} \right)\)即 \({S_n} = - \frac{{2 \times \left( {1 - {2^n}} \right)}}{{1 - 2}} + n \cdot {2^{n + 1}} - \frac{{n \cdot \left( {n + 1} \right)}}{2}\)\( = \left( {n - 1} \right) \cdot {2^{n + 1}} + 2 - \frac{{n \cdot \left( {n + 1} \right)}}{2}\),所以数列 \(\left\{ {{a_n} \cdot {T_n}} \right\}\) 的前 \(n\) 项和为 \(\left( {n - 1} \right) \cdot {2^{n + 1}} + 2 - \frac{{n\left( {n + 1} \right)}}{2}\).
第196题
求数列
参考答案:解:当 \(n \geqslant 2\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n}\)\( = 2 + (n - 1) \cdot {2^{n + 1}}\),①\({a_1} + 2{a_2} + \cdots + (n - 1){a_{n - 1}}\)\( = 2 + (n - 2) \cdot {2^n}\),\(n \geqslant 2\),②① -②得 \(n{a_n} = n \cdot {2^n} \Rightarrow {a_n} = {2^n}(n \geqslant 2)\)(*)在①中令 \(n = 1\),得 \({a_1} = 2\),也满足(*),所以 \({a_n} = {2^n}\),\(n \in {{\mathbf{N}}^*}\),
参考答案:解:由(1)知,\({b_n} = \frac{{{2^n}}}{{\left( {{2^n} - 1} \right)\left( {{2^{n + 1}} - 1} \right)}} = \frac{1}{{{2^n} - 1}} - \frac{1}{{{2^{n + 1}} - 1}}\),故 \({T_n} = \left( {\frac{1}{{{2^1} - 1}} - \frac{1}{{{2^2} - 1}}} \right)\)\( + \left( {\frac{1}{{{2^2} - 1}} - \frac{1}{{{2^3} - 1}}} \right) + \)\( \cdots + \left( {\frac{1}{{{2^n} - 1}} - \frac{1}{{{2^{n + 1}} - 1}}} \right)\)\( = 1 - \frac{1}{{{2^{n + 1}} - 1}}\),于是,\({T_n} < {m^2} - 3 \Leftrightarrow \)\(1 - \frac{1}{{{2^{n + 1}} - 1}} < {m^2} - 3\)因为 \(1 - \frac{1}{{{2^{n + 1}} - 1}}\) 随 \(n\) 的增大而增大,所以 \({m^2} - 3 \geqslant 1\),解得 \(m \leqslant - 2\) 或 \(m \geqslant 2\)所以实数 \(m\) 的取值范围是 \(m \leqslant - 2\) 或 \(m \geqslant 2\).
第198题
求
参考答案:解:由题意,数列 \(\left\{ {{a_n}} \right\}\) 中,\({a_1} = 1\),\({a_{n + 1}} + 2{a_n} = {2^{n + 1}},n \in {N^ * }\),所以 \({a_2} = - 2{a_1} + {2^2} = 2\),\({a_3} = - 2{a_2} + {2^3} = 4\),\({a_4} = - 2{a_3} + {2^4} = 8\),两边同除 \({2^{n + 1}}\),可得 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} + \frac{{{a_n}}}{{{2^n}}} = 1\),即 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} = - \frac{{{a_n}}}{{{2^n}}} + 1\),设 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} + \lambda = - (\frac{{{a_n}}}{{{2^n}}} + \lambda )\),可得 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} = - \frac{{{a_n}}}{{{2^n}}} - 2\lambda \),令 \( - 2\lambda = 1\),解得 \(\lambda = - \frac{1}{2}\),所以 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} - \frac{1}{2} = - (\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2})\),因为 \({a_1} = 1\),所以 \(\frac{{{a_{n + 1}}}}{{{2^{n + 1}}}} - \frac{1}{2} = - (\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2}) = \frac{{{a_{n - 1}}}}{{{2^{n - 1}}}} - \frac{1}{2} = - (\frac{{{a_{n - 2}}}}{{{2^{n - 2}}}} - \frac{1}{2}) = \cdots = \frac{{{a_1}}}{2} - \frac{1}{2} = 0\),所以 \(\frac{{{a_n}}}{{{2^n}}} - \frac{1}{2} = 0\),可得 \({a_n} = \frac{1}{2} \times {2^n} = {2^{n - 1}}\),所以数列 \(\left\{ {{a_n}} \right\}\) 的通项公式为 \({a_n} = {2^{n - 1}}\).
第199题
记
参考答案:解:由 \({a_n} = {2^{n - 1}}\),可得 \(n{a_n} = n \cdot {2^{n - 1}}\),则 \({S_n} = 1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + \cdots + (n - 1) \cdot {2^{n - 2}} + n \cdot {2^{n - 1}}\),可得 \(2{S_n} = 1 \cdot {2^1} + 2 \cdot {2^2} + 3 \cdot {2^3} + \cdots + (n - 1) \cdot {2^{n - 1}} + n \cdot {2^n}\),两式相减得到 \( - {S_n} = 1 + {2^1} + {2^2} + \cdots + {2^{n - 1}} - n \cdot {2^n} = \frac{{1 - {2^n}}}{{1 - 2}} - n \cdot {2^n} = (1 - n) \cdot {2^n} - 1\),所以 \({S_n} = (n - 1) \cdot {2^n} + 1\).
第200题
求
参考答案:解:由题意,设等差数列 \(\{ {a_n}\} \) 的公差为 \(d\),
则 \(3{a_1} + 3d = 18\),\(3{a_1} + 12d = 54\),
解得 \({a_1} = 2\),\(d = 4\) \(\therefore \)\({a_n} = 2 + 4(n - 1) = 4n - 2\),\(n \in {N^*}\);