“微信扫一扫”进入考试题库练习及模拟考试
A.1
B.2
C.3
D.4
参考答案:B
解析:
当
当
当
即左边大于右边,不等式成立,
则对任意
故选:B.
A.\({2^k}\)
B.\({2^k} - 1\)
C.\({2^{k - 1}}\)
D.\(k\)
参考答案:A
解析:
用数学归纳法证明不等式
假设
那么当
共
故选:A
参考答案:\(k + 1\)
解析:
参考答案:\({f_n}\left( x \right) = \frac{x}{{\left( {{2^n} - 1} \right)x + {2^n}}}\) ,下面用数学归纳法证明:
(1)当 \(n = 1\) 时, \({f_1}\left( x \right) = \frac{x}{{\left( {2 - 1} \right)x + 2}} = \frac{x}{{x + 2}}\) ,此时等式成立;
(2)设当 \(n = k\) 时,有 \({f_k}\left( x \right) = \frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}}\) ,则当 \(n = k + 1\) 时,
\({f_{k + 1}}\left( x \right) = f\left[ {{f_k}\left( x \right)} \right] = \frac{{\frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}}}}{{\frac{x}{{\left( {{2^k} - 1} \right)x + {2^k}}} + 2}} = \frac{x}{{\left( {{2^{k + 1}} - 1} \right)x + {2^{k + 1}}}}\) ,
故当 \(n = k + 1\) 时,等式也成立
由(1)、(2)知原等式成立.
第145题
根据给出不等式的规律,归纳猜想出不等式的一般结论;
参考答案:观察不等式左边最后一个数分母的特点:\(1 = {2^1} - 1,3 = {2^2} - 1,7 = {2^3} - 1,15 = {2^4} - 1\) ,……猜想不等式左边最后一个数分母 \({2^n} - 1\) ,对应各式右端为 \(\frac{n}{2}\) ,所以,不等式的一般结论为: \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \ldots + \frac{1}{{{2^n} - 1}} > \frac{n}{2}\left( {n \in {N_ + }} \right)\) .
第146题
用数学归纳法证明你的猜想.
参考答案:证明:①当 \(n = 1,2\) 时显然成立;
②假设 \(n = k\) 时结论成立,即: \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \ldots + \frac{1}{{{2^k} - 1}} > \frac{k}{2}\) 成立
当 \(n = k + 1\) 时,
\(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \ldots + \frac{1}{{{2^k} - 1}} + \frac{1}{{{2^k}}} + \ldots \ldots + \frac{1}{{{2^{k + 1}} - 2}} + \frac{1}{{{2^{k + 1}} - 1}}\) \( > \frac{k}{2} + \left( {\frac{1}{{{2^k}}} + \frac{1}{{{2^k} + 1}} + \cdots \cdots + \frac{1}{{{2^{k + 1}} - 2}} + \frac{1}{{{2^{k + 1}} - 1}}} \right)\)
\( > \frac{k}{2} + {2^k} \cdot \frac{1}{{{2^{k + 1}} - 1}} = \frac{k}{2} + \frac{1}{{2 - \frac{1}{{{2^k}}}}} > \frac{k}{2} + \frac{1}{2} = \frac{{k + 1}}{2}\)
即当 \(n = k + 1\) 时结论也成立.由①②可知对任意\(n\in \text{N}_{+}\),结论都成立.
第147题
求
参考答案:解:\(\because \)在数列 \(\left\{ {{a_n}} \right\}\) 中, \({a_1} = 1\), \({a_{n + 1}} = \sqrt {{a_n}^2 - 2{a_n} + 2} - 1\)\(\left( {n \in {N^ * }} \right)\) \(\therefore \) \({a_2} = {a_{1 + 1}} = \sqrt {{a_1}^2 - 2{a_1} + 2} - 1 = 0\) , \({a_3} = {a_{2 + 1}} = \sqrt {{a_2}^2 - 2{a_2} + 2} - 1 = \sqrt 2 - 1\) .
第148题
证明:①
参考答案:①证明:设 \(f\left( x \right) = \sqrt {{{\left( {x - 1} \right)}^2} + 1} - 1\) ,则 \({a_{n + 1}} = f\left( {{a_n}} \right)\) ,\(\left( i \right)\)当 \(n = 1\) 时,命题成立, \(\left( {ii} \right)\)假设 \(n = k\) 时,命题成立,即 \(0 \leqslant {a_k} \leqslant 1\) 当 \(n = k{\rm{ + 1}}\) 时,易知 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,从而 \(0 = f\left( 1 \right) \leqslant f\left( {{a_k}} \right) \leqslant f\left( 0 \right) = \sqrt 2 - 1 < 1\) ,即 \(0 \leqslant {a_k} \leqslant 1\) ,所以当 \(n = k{\rm{ + 1}}\) 时结论成立,由 \(\left( i \right)\) , \(\left( {ii} \right)\) 可知命题成立.②先证 \({a_{2n}} < {a_{2n + 1}}\) ,\(\left( {n \in {N^ * }} \right)\),\(\left( i \right)\)当 \(n = 1\) 时, \(0 = {a_2} < {a_3} = \sqrt 2 - 1\) ,即 \(n = 1\) 时,命题成立,\(\left( {ii} \right)\)假设 \(n = k\) 时,命题成立,即 \({a_{2k}} < {a_{2k + 1}}\),\(\left( {k \in {N^ * }} \right)\) ,则当 \(n = k{\rm{ + 1}}\) 时,由①中 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,得 \({a_{2k + 1}} = f\left( {{a_{2k}}} \right) > f\left( {{a_{2k + 1}}} \right) = {a_{2k + 2}}\) ,故 \({a_{2k + 2}} = f\left( {{a_{2k + 1}}} \right) > f\left( {{a_{2k + 2}}} \right) = {a_{2k + 3}}\) ,所以当 \(n = k{\rm{ + 1}}\) 时结论成立,由 \(\left( i \right)\) , \(\left( {ii} \right)\) 可知 \({a_{2n}} < {a_{2n + 1}}\) , \(\left( {n \in {N^ * }} \right)\) ,再证 \({a_{2n}} < \frac{1}{4} < {a_{2n + 1}}\) ,由上可知, \({a_{2n}} < \sqrt {{a_{2n}}^2 - 2{a_{2n}} + 2} - 1\) ,即 \({\left( {{a_{2n}} + 1} \right)^2} < {a_{2n}}^2 - 2{a_{2n}} + 2\) ,因此 \({a_{2n}} < \frac{1}{4}\) ,由 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,得 \(f\left( {{a_{2n}}} \right) > f\left( {{a_{2n + 1}}} \right)\) ,即 \({a_{2n + 1}} > {a_{2n + 2}}\) ,所以 \({a_{2n + 1}} < \sqrt {{a_{2n + 1}}^2 - 2{a_{2n + 1}} + 2} - 1\) ,即 \({a_{2n + 1}} > \frac{1}{4}\) ,所以 \({a_{2n}} < \frac{1}{4} < {a_{2n + 1}}\) .
参考答案:证明(数学归纳法):对任意的 \(m \in {{\mathbf{N}}^*}\) ,①当 \(n = m\) 时,左边 \( = \left( {m + 1} \right){\rm{C}}_m^m = m + 1\) ,右边 \( = \left( {m + 1} \right){\rm{C}}_{m + 2}^{m + 2} = m + 1\) ,等式成立.②假设 \(n = k\left( {k⩾m} \right)\) 时命题成立,即 \(\left( {m + 1} \right){\rm{C}}_m^m + \left( {m + 2} \right){\rm{C}}_{m + 1}^m + \left( {m + 3} \right){\rm{C}}_{m + 2}^m + \cdots + \) \(k{\rm{C}}_{k - 1}^m + \left( {k + 1} \right){\rm{C}}_k^m = \left( {m + 1} \right){\rm{C}}_{k + 2}^{m + 2}\) ,当 \(n = k + 1\) 时,左边\( = \left( {m + 1} \right){\rm{C}}_m^m + \left( {m + 2} \right){\rm{C}}_{m + 1}^m + \left( {m + 3} \right){\rm{C}}_{m + 2}^m + \cdots + \)\(k{\rm{C}}_{k - 1}^m + \left( {k + 1} \right){\rm{C}}_k^m + \left( {k + 2} \right){\rm{C}}_{k + 1}^m\) \( = \left( {m + 1} \right){\rm{C}}_{k + 2}^{m + 2} + \left( {k + 2} \right){\rm{C}}_{k + 1}^m\) .又由于右边 \( = \left( {m + 1} \right){\rm{C}}_{k + 3}^{m + 2}\) ,而 \(\left( {m + 1} \right){\rm{C}}_{k + 3}^{m + 2} - \left( {m + 1} \right){\rm{C}}_{k + 2}^{m + 2}{\rm{ = }}\)\(\left( {m + 1} \right)\left[ {\frac{{\left( {k + 3} \right)!}}{{\left( {m + 2} \right)!\left( {k - m + 1} \right)!}} - \frac{{\left( {k + 2} \right)!}}{{\left( {m + 2} \right)!\left( {k - m} \right)!}}} \right]{\rm{ = }}\) \(\left( {m + 1} \right) \times \frac{{\left( {k + 2} \right)!}}{{\left( {m + 2} \right)!\left( {k - m + 1} \right)!}}\left[ {k + 3 - \left( {k - m + 1} \right)} \right]\)\( = \left( {k + 2} \right)\frac{{\left( {k + 1} \right)!}}{{m!\left( {k - m + 1} \right)!}}\)\( = \left( {k + 2} \right){\rm{C}}_{k + 1}^m\) .因此 \(\left( {m + 1} \right){\rm{C}}_{k + 2}^{m + 2} + \left( {k + 2} \right){\rm{C}}_{k + 1}^m = \left( {m + 1} \right){\rm{C}}_{k + 3}^{m + 2}\) ,因此左边\( = \)右边,因此\(n = k + 1\)时命题也成立.综合①②可得命题对任意 \(n⩾m\) 均成立.
第150题
求出
参考答案:由 \({a_1} = 1\),\({a_{n + 1}} = {a_n} + \frac{1}{{n\left( {n + 1} \right)}}\) 可得 \({a_2} = {a_1} + \frac{1}{{1 \times 2}} = \frac{3}{2}\),\({a_3} = {a_2} + \frac{1}{{2 \times 3}} = \frac{5}{3}\),\({a_4} = {a_3} + \frac{1}{{3 \times 4}} = \frac{7}{4}\)
第151题
归纳出数列
参考答案:猜想数列\(\left\{ {{a_n}} \right\}\)的通项公式为 \({a_n} = \frac{{2n - 1}}{n}\) 用数学归纳法证明如下:(ⅰ)当 \(n = 1\) 时,左边= \({a_1} = 1\) ,右边= \(\frac{{2 \times 1 - 1}}{1} = 1\) ,∴左边=右边即猜想成立;(ⅱ)假设当\(n = k\)时,猜想成立,即有 \({a_k} = \frac{{2k - 1}}{k}\) 那么当 \(n = k + 1\) 时,\({a_{k + 1}} = {a_k} + \frac{1}{{k \times \left( {k + 1} \right)}} = \frac{{2k - 1}}{k} + \frac{1}{{k \times \left( {k + 1} \right)}} = \frac{{2k + 1}}{{k + 1}} = \frac{{2\left( {k + 1} \right) - 1}}{{k + 1}}\) 从而猜想对 \(n = k + 1\) 也成立;由(ⅰ)(ⅱ)可知,猜想对任意的 \(n \in {N^ * }\) 都成立,所以数列\(\left\{ {{a_n}} \right\}\)的通项公式为 \({a_n} = \frac{{2n - 1}}{n}\) .
参考答案:16410
解析:
由题意,
所以
所以
故答案为:
第153题
求
参考答案:在集合 \(S = \left\{ {1,2,3,4,5} \right\}\) 中,取出的4元子集共有 \(C_5^4 = 5\) 个,其中以数字2为第2个数的子集有3个,以数字3为第2个数的子集有2个,故 \(F\left( 5 \right) = 6 + 6 = 12\) .
第154题
求证:
参考答案:第2个数为\(k\)时,则在1,2,3,…,\(k - 1\)中取一个数排在第1位,在 \(k + 1\),\(k + 2\) ,…,\(n\) 中取出2个数排在后2位置上,因此,第2个数为\(k\)的4元子集个数为 \(C_{k - 1}^1C_{n - k}^2\) ,其中 \(2 \leqslant k \leqslant n - 2\) ,所以 \(F\left( n \right) = 2C_1^1C_{n - 2}^2 + 3C_2^1C_{n - 3}^2 + \cdots + \left( {n - 2} \right)C_{n - 3}^1C_2^2\) \( = 2\left( {C_2^2C_{n - 2}^2 + C_3^2C_{n - 3}^2 + \cdots + C_{n - 2}^2C_2^2} \right)\) 下面证明: \(C_2^2C_{n - 2}^2 + C_3^2C_{n - 3}^2 + \cdots + C_{n - 2}^2C_2^2 = C_{n + 1}^5\) 当 \(n = 5\) 时,由(1)知等式成立;假设 \(n = k\left( {k \geqslant 5} \right)\) 时,等式成立,即 \(C_2^2C_{k - 2}^2 + C_3^2C_{k - 3}^2 + \cdots + C_{k - 2}^2C_2^2 = C_{k + 1}^5\) 则 \(n = k + 1\) 时,\(C_2^2C_{k - 1}^2 + C_3^2C_{k - 2}^2 + \cdots + C_{k - 1}^2C_2^2\) \( = C_2^2\left( {C_{k - 2}^2 + C_{k - 2}^1} \right) + C_3^2\left( {C_{k - 3}^2 + C_{k - 3}^1} \right) + \cdots + C_{k - 2}^2\left( {C_2^2 + C_2^1} \right) + C_{k - 1}^2C_2^2\) \( = C_2^2C_{k - 2}^2 + C_3^2C_{k - 3}^2 + \cdots + C_{k - 2}^2C_2^2 + \left( {k - 2} \right)C_2^2 + \left( {k - 3} \right)C_3^2 + \cdots + 2C_{k - 2}^2 + C_{k - 1}^2\) \( = C_{k + 1}^5 + \left( {k + 1} \right)\left( {C_2^2 + C_3^2 + \cdots + C_{k - 1}^2} \right) - \left( {3C_2^2 + 4C_3^2 + \cdots + kC_{k - 1}^2} \right)\) \( = C_{k + 1}^5 + \left( {k + 1} \right)C_k^3 - 3\left( {C_3^3 + C_4^3 + \cdots C_k^3} \right)\) \( = C_{k + 1}^5 + 4C_{k + 1}^4 - 3C_{k + 1}^4 = C_{k + 2}^5\) 即 \(n = k + 1\) 时,等式成立.故 \(\frac{{F\left( n \right)}}{{C_{n + 1}^5}} = 2\) .
第155题
计算
参考答案:由 \({a_1} = 3\),\({a_n}_{ + 1} = 3{a_n} - 4n\) ,得 \({a_2} = 3{a_1} - 4 = 3 \times 3 - 4 = 5\),\({a_3} = 3{a_2} - 4 \times 2 = 3 \times 5 - 8 = 7\) ,猜想\(\{ {a_n}\} \)的通项公式为 \({a_n} = 2n + 1\) .下面利用数学归纳法证明:当 \(n = 1\) 时, \({a_1} = 3\) 成立;假设当 \(n = k\)(\(k \in {\mathbf{N}}\),\(k \geqslant 1\)) 时成立,即 \({a_k} = 2k + 1\) ,则当 \(n = k + 1\) 时, \({a_k}_{ + 1} = 3{a_k} - 4k = 3\left( {2k + 1} \right) - 4k = 2k + 3 = 2\left( {k + 1} \right) + 1\) .∴当 \(n = k + 1\) 时结论成立.综上所述,对于任意 \(n \in {\mathbf{N}}\) ,有 \({a_n} = 2n + 1\) ;
参考答案:证明: \({b_n} = {a_n}^2 = {\left( {2n + 1} \right)^2} = 4{n^2} + 4n + 1 > 4n\left( {n + 1} \right)\) , \(\therefore \frac{1}{{{b_n}}} < \frac{1}{{4n(n + 1)}} = \frac{1}{4}(\frac{1}{n} - \frac{1}{{n + 1}})\) 则 \(\frac{1}{{{b_1}}} + \frac{1}{{{b_2}}} + \frac{1}{{{b_3}}} + \cdot \cdot \cdot + \frac{1}{{{b_n}}} < \frac{1}{4}\left[ {\left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \cdot \cdot \cdot + \left( {\frac{1}{n} - \frac{1}{{n + 1}}} \right)} \right] = \frac{1}{4}\left( {1 - \frac{1}{{n + 1}}} \right) < \frac{1}{4}\) .
第158题
猜想
参考答案:当 \(n \geqslant 4\) 时,首先,对于第1个扇形 \({a_1}\) ,有4种不同的染法,由于第2个扇形 \({a_2}\) 的颜色与 \({a_1}\) 的颜色不同,所以,对于 \({a_2}\) 有3种不同的染法,类似地,对扇形 \({a_3}\),…,\({a_{n - 1}}\) 均有3种染法.对于扇形 \({a_n}\) ,用与 \({a_{n - 1}}\) 不同的3种颜色染色,但是,这样也包括了它与扇形 \({a_1}\) 颜色相同的情况,而扇形 \({a_1}\) 与扇形 \({a_n}\) 颜色相同的不同染色方法数就是 \(f\left( {n - 1} \right)\) ,于是可得 \(f\left( n \right) = 4 \times {3^{n - 1}} - f\left( {n - 1} \right)\) 猜想 \(f\left( n \right) = {3^n} + {\left( { - 1} \right)^n} \cdot 3\) 当 \(n = 3\) 时,左边 \(f\left( 3 \right) = 24\) ,右边 \({3^3} + {\left( { - 1} \right)^3} \cdot 3 = 24\) ,所以等式成立假设 \(n = k\left( {k \geqslant 3} \right)\) 时, \(f\left( k \right) = {3^k} + {\left( { - 1} \right)^k} \cdot 3\) ,则 \(n = k + 1\) 时, \(f\left( {k + 1} \right) = 4 \times {3^k} - f\left( k \right) = 4 \times {3^k} - {3^k} - {\left( { - 1} \right)^k} \cdot 3\) \( = {3^{k + 1}} + {\left( { - 1} \right)^{k + 1}} \cdot 3\) 即 \(n = k + 1\) 时,等式也成立综上 \(f\left( n \right) = {3^n} + {\left( { - 1} \right)^n} \cdot 3\) \(\left( {n \geqslant 3} \right)\) 点睛:本题考查考查归纳分析能力,考查数学归纳法的应用,属中档题.
第159题
参考答案:由AB、BC、AC为有理数及余弦定理知\( \mathrm{cos}A=\frac{{AB}^{2}+{AC}^{2}-{BC}^{2}}{2AB\bullet AC}\)是有理数.
第160题
对任意正整数
参考答案:用数学归纳法证明\( \mathrm{cos}nA\) 和 \( \mathrm{sin}A\bullet \mathrm{sin}nA\)都是有理数.①当\(n = 1\)时,由(1)知\( \mathrm{cos}nA\)是有理数,从而有\( \mathrm{sin}A\bullet \mathrm{sin}nA=1-\mathrm{cos}2A\)也是有理数.②假设当\( \mathrm{n}=\mathrm{k}\left(k\ge 1\right)\)时,\( \mathrm{cos}kA\) 和 \( \mathrm{sin}A\bullet \mathrm{sin}kA\)都是有理数.当\( \mathrm{n}=\mathrm{k}+1\)时,由\( \mathrm{cos}\left(k+1\right)A=\mathrm{cos}A\bullet \mathrm{cos}kA-\mathrm{sin}A\bullet \mathrm{sin}kA\), \( \mathrm{sin}A\bullet \mathrm{sin}\left(k+1\right)A=\mathrm{sin}A\bullet \left(\mathrm{sin}A\bullet \mathrm{cos}kA+\mathrm{cos}A\bullet \mathrm{sin}kA\right)=\left(\mathrm{sin}A\bullet \mathrm{sin}A\right)\bullet \mathrm{cos}kA+\left(\mathrm{sin}A\bullet \mathrm{sin}kA\right)\bullet \mathrm{cos}A\) 由①和归纳假设,知 \( \mathrm{cos}\left(k+1\right)A\) 和\( \mathrm{sin}A\bullet \mathrm{sin}\left(k+1\right)A\) 都是有理数.即当\( \mathrm{n}=\mathrm{k}+1\)时,结论成立.综合①、②可知,对任意 \(n\),\( \mathrm{cos}nA\) 和 \( \mathrm{sin}A\bullet \mathrm{sin}nA\) 都是有理数.