“微信扫一扫”进入题库练习及模拟考试
在数列
证明:①
参考答案:①证明:设 \(f\left( x \right) = \sqrt {{{\left( {x - 1} \right)}^2} + 1} - 1\) ,则 \({a_{n + 1}} = f\left( {{a_n}} \right)\) ,\(\left( i \right)\)当 \(n = 1\) 时,命题成立, \(\left( {ii} \right)\)假设 \(n = k\) 时,命题成立,即 \(0 \leqslant {a_k} \leqslant 1\) 当 \(n = k{\rm{ + 1}}\) 时,易知 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,从而 \(0 = f\left( 1 \right) \leqslant f\left( {{a_k}} \right) \leqslant f\left( 0 \right) = \sqrt 2 - 1 < 1\) ,即 \(0 \leqslant {a_k} \leqslant 1\) ,所以当 \(n = k{\rm{ + 1}}\) 时结论成立,由 \(\left( i \right)\) , \(\left( {ii} \right)\) 可知命题成立.②先证 \({a_{2n}} < {a_{2n + 1}}\) ,\(\left( {n \in {N^ * }} \right)\),\(\left( i \right)\)当 \(n = 1\) 时, \(0 = {a_2} < {a_3} = \sqrt 2 - 1\) ,即 \(n = 1\) 时,命题成立,\(\left( {ii} \right)\)假设 \(n = k\) 时,命题成立,即 \({a_{2k}} < {a_{2k + 1}}\),\(\left( {k \in {N^ * }} \right)\) ,则当 \(n = k{\rm{ + 1}}\) 时,由①中 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,得 \({a_{2k + 1}} = f\left( {{a_{2k}}} \right) > f\left( {{a_{2k + 1}}} \right) = {a_{2k + 2}}\) ,故 \({a_{2k + 2}} = f\left( {{a_{2k + 1}}} \right) > f\left( {{a_{2k + 2}}} \right) = {a_{2k + 3}}\) ,所以当 \(n = k{\rm{ + 1}}\) 时结论成立,由 \(\left( i \right)\) , \(\left( {ii} \right)\) 可知 \({a_{2n}} < {a_{2n + 1}}\) , \(\left( {n \in {N^ * }} \right)\) ,再证 \({a_{2n}} < \frac{1}{4} < {a_{2n + 1}}\) ,由上可知, \({a_{2n}} < \sqrt {{a_{2n}}^2 - 2{a_{2n}} + 2} - 1\) ,即 \({\left( {{a_{2n}} + 1} \right)^2} < {a_{2n}}^2 - 2{a_{2n}} + 2\) ,因此 \({a_{2n}} < \frac{1}{4}\) ,由 \(f\left( x \right)\) 在 \(\left( { - \infty ,1} \right]\) 上为减函数,得 \(f\left( {{a_{2n}}} \right) > f\left( {{a_{2n + 1}}} \right)\) ,即 \({a_{2n + 1}} > {a_{2n + 2}}\) ,所以 \({a_{2n + 1}} < \sqrt {{a_{2n + 1}}^2 - 2{a_{2n + 1}} + 2} - 1\) ,即 \({a_{2n + 1}} > \frac{1}{4}\) ,所以 \({a_{2n}} < \frac{1}{4} < {a_{2n + 1}}\) .