用数学归纳法证明不等式 \(1 + \frac{1}{2} + \frac{1}{3} + \cdot \cdot \cdot + \frac{1}{{{2^n} - 1}} < n\) 的过程中,
假设 \(n = k\) 时不等式成立,则左边 \( = 1 + \frac{1}{2} + \frac{1}{3} + \cdot \cdot \cdot + \frac{1}{{{2^k} - 1}}\) ,
那么当 \(n = k + 1\) 时,左边 \( = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{{{2^k} - 1}} + \frac{1}{{{2^k}}} + \frac{1}{{{2^k} + 1}} + \ldots + \frac{1}{{{2^{k + 1}} - 1}}\) ,
\(\therefore \)由 \(n = k\) 递推到 \(n = k + 1\) 时,不等式左边增加了: \(\frac{1}{{{2^k}}} + \frac{1}{{{2^k} + 1}} + \ldots + \frac{1}{{{2^{k + 1}} - 1}}\) ,
共 \(\left( {{2^{k + 1}} - 1} \right) - {2^k} + 1 = {2^k}\) 项.
故选:A