“微信扫一扫”进入考试题库练习及模拟考试
A.1
B.2
C.3
D.2017
参考答案:D
解析:
因为 \({a_n} + {a_{n + 1}} + {a_{n + 2}} = 2020\) ,
所以 \({a_{n + 1}} + {a_{n + 2}} + {a_{n + 3}} = 2020\) ,
两式相减可得, \({a_n} = {a_{n + 3}}\) ,
所以数列\(\left\{ {{a_n}} \right\}\)为以\(3\)为周期的周期数列,
又因为 \({a_{2020}} + {a_{2021}} + {a_{2022}} = 2020\) ,
即 \({a_{2020}} + 2 + 1 = 2020\) ,所以 \({a_{2020}} = 2017\) ,
因为 \(2020 = 673 \times 3 + 1\) ,所以 \({a_{2020}} = {a_1} = 2017\) .
故选:D
A.\(2\)
B.\(3\)
C.\(6\)
D.\(8\)
参考答案:C
解析:
由题可知等积数列的各项以\(2\)为一个周期循环出现,每相邻两项的和相等,前\(41\) 项的和为 \(103\)
则 \(\left( {{a_1} + {a_2}} \right) + \left( {{a_3} + {a_4}} \right) + \cdots + \left( {{a_{39}} + {a_{40}}} \right) + {a_{41}} = 103\)
即 \(20\left( {{a_1} + {a_2}} \right){\rm{ + }}{a_1} = 103\) ,解得 \({a_2} = 2\)
所以公积是 \(2 \times 3{\rm{ = }}6\)
故选C.
A.1347
B.1348
C.1349
D.1346
参考答案:A
解析:
由数列\(1,1,2,3,5,8,13,21,34,…,\)各项除以\(2\)的余数,可得数列 \(\left\{ {{a_n}} \right\}\) 为\(1,1,0,1,1,0,1,1,0,…,\)所以数列\(\left\{ {{a_n}} \right\}\)是周期为3的周期数列,前三项和为 \(1 + 1 + 0 = 2\) ,又因为 \(2020 = 673 \times 3 + 1\) ,所以数列 \(\left\{ {{a_n}} \right\}\) 的前 2020 项的和为 \(673 \times 2 + 1 = 1347\) .
故选:A
A.\(1840\)
B.\(1880\)
C.\(1960\)
D.\(1980\)
参考答案:A
解析:
由于\({a}_{n}={{n}^{2}}\left ( {\cos^{2} {\frac {n\pi } {3}-\sin^{2} {\frac {n\pi } {3}}}} \right )={{n}^{2}}\cos \frac {2n\pi } {3}\)
\(\therefore T = \frac{{2\pi }}{{\frac{{2\pi }}{3}}} = 3\)
又 \({a_{3k - 2}} + {a_{3k - 1}} + {a_{3k}} = - \frac{1}{2}{(3k - 2)^2} - \frac{1}{2}{(3k - 1)^2} + {(3k)^2} = 9k - \frac{5}{2}\)
\(\therefore {S_{60}} = 9({\rm{1 + 2 + }}...{\rm{ + 20)}} - \frac{5}{2} \times 20 = 1890 - 50 = 1840\)
故选:A
A.0
B.1
C.2
D.3
参考答案:C
解析:
由题公差 \(d > 0\) 的等差数列 \(\left\{ {{a_n}} \right\}\) ,设其通项公式 \({a_n} = {a_1} + \left( {n - 1} \right)d = dn + {a_1} - d\) ,是递增数列,(1)正确; \({a_n} + 3nd = 4dn + {a_1} - d\) 是递增数列,所以(4)正确;
若 \({a_n} = n - 10\) , \(n{a_n} = {n^2} - 10n\) 不是递增数列,所以(2)错误; \(\frac{{{a_n}}}{n} = \frac{{n - 10}}{n} = 1 - \frac{{10}}{n}\) 是递增数列,所以(3)错误.
故选:C
第6题
已知数列 \(\left\{ {{a_n}} \right\}\) 中, \({a_n} = - 2{n^2} + 29n + 3\) ,则数列中最大项的值是( )
A.107
B.108
C.\(108\frac{1}{8}\)
D.109
参考答案:B
解析:
由题意可知
\({a_n} = - 2{n^2} + 29n + 3 = - 2{\left( {n - \frac{{29}}{4}} \right)^2} + 108\frac{1}{8}\) ,
由于\(n \in {N^*}\),
故当\(n\)取距离 \(\frac{{29}}{4}\) 最近的正整数\(7\)时,\({a_n}\)取得最大值\(108\).
∴数列 \(\left\{ {{a_n}} \right\}\) 中的最大值为 \({a_7} = 108\) .
故选:B.
A.5
B.6
C.7
D.8
参考答案:AB
解析:
当 \(n = 1\) 时, \({a_1} = {S_1} = \lambda {a_1} - 1\) , \(\therefore \lambda - 1 = 1\) ,解得: \(\lambda = 2\)
\(\therefore {S_n} = 2{a_n} - 1\)
当 \(n \geqslant 2\) 且 \(n \in {N^ * }\) 时, \({S_{n - 1}} = 2{a_{n - 1}} - 1\)
\(\therefore {a_n} = {S_n} - {S_{n - 1}} = 2{a_n} - 2{a_{n - 1}}\) ,即: \({a_n} = 2{a_{n - 1}}\)
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 是以\(1\)为首项, \(2\) 为公比的等比数列, \(\therefore {a_n} = {2^{n - 1}}\)
\(\because {a_n}{b_n} = - {n^2} + 9n - 20\) , \(\therefore {b_n} = \frac{{ - {n^2} + 9n - 20}}{{{2^{n - 1}}}}\)
\(\therefore {b_{n + 1}} - {b_n} = \frac{{ - {{\left( {n + 1} \right)}^2} + 9\left( {n + 1} \right) - 20}}{{{2^n}}} - \frac{{ - {n^2} + 9n - 20}}{{{2^{n - 1}}}} = \frac{{{n^2} - 11n + 28}}{{{2^n}}} < 0\)
\(\because {2^n} > 0\) , \(\therefore {n^2} - 11n + 28 = \left( {n - 4} \right)\left( {n - 7} \right) < 0\) ,解得: \(4 < n < 7\)
又 \(n \in {N^ * }\) , \(\therefore n = 5\)或\(6\)
故选:AB
第8题
将正整数按下图方式排列,2019出现在第 \(i\) 行第 \(j\) 列,则 \(i + j = \) ___; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … … …
参考答案:128
解析:
因为前 \(n\) 行一共有 \({n^2}\) 个数,且第 \(n\) 行的最后一个数为 \({n^2}\) ,
又因为 \({44^2} = 1936 < 2019,{45^2} = 2025 > 2019\) ,
所以 \(2019\) 在第 \(45\) 行,
且第 45 行最后数为 \({45^2} = 2025\) ,
又因为第 \(45\) 行有 \(2 \times 45 - 1 = 89\) 个数, \(2025 - 2019 = 6\) ,
所以 \(2019\) 在第 \(89 - 6 = 83\) 列,
所以\(i + j = 45 + 83 = 128\).
故答案为:\(128\).
参考答案:\(\frac{1}{2}\);29
解析:
由题意, \({a_1} = 2\) , \({a_2} = 3\) , \({a_n} = \frac{{{a_{n - 1}}}}{{{a_{n - 2}}}}\) ( \(n \in {{\rm{N}}^*}\) , \(n \geqslant 3\) ),
\(\therefore {a_3} = \frac{{{a_2}}}{{{a_1}}}{\rm{ = }}\frac{3}{2},{a_4} = \frac{{{a_3}}}{{{a_2}}}{\rm{ = }}\frac{1}{2},{a_5} = \frac{{{a_4}}}{{{a_3}}}{\rm{ = }}\frac{1}{3},{a_6} = \frac{{{a_5}}}{{{a_4}}}{\rm{ = }}\frac{2}{3},{a_7} = \frac{{{a_6}}}{{{a_5}}}{\rm{ = 2}},{a_8} = \frac{{{a_7}}}{{{a_6}}}{\rm{ = 3}},...\)
故数列 \(\left\{ {{a_n}} \right\}\) 为周期 \(T = 6\) 的周期数列
\({a_{2020}} = {a_{336 \times 6 + 4}} = {a_4} = \frac{1}{2}\)
由于 \({a_1} + {a_2} + {a_3} + {a_4} + {a_5} + {a_6} = 2 + 3 + \frac{3}{2} + \frac{1}{2} + \frac{1}{3} + \frac{2}{3} = 8\)
故 \({S_{20}} = 3 \times 8{\rm{ + }}{a_1} + {a_2} = 29\)
故答案为: \(\frac{1}{2}\),29
参考答案:\(10n - 2\);216
解析:
\({T_n}\) 为数列 \(\left\{ {{b_n}} \right\}\) 的前\(n\)项的和, \({T_n} = 5{n^2} + 3n\) ,
\({b_n} = {T_n} - {T_{n - 1}} = \left( {5{n^2} + 3n} \right) - \left[ {5{{\left( {n - 1} \right)}^2} + 3\left( {n - 1} \right)} \right] = 10n - 2\left( {n \geqslant 2} \right)\)
验证 \(n = 1\) 时, \({b_1} = {T_1} = 8\) 也符合,故 \({b_n} = 10n - 2\) , \(\because {b_n} = {a_{{2^{n - 1}}}}\) , \(\therefore {a_{1024}} = {b_{11}} = 108\) ,\({a_{1025}} = 2{a_{1024}} = 216\) .
故答案为: \(10n - 2\) ; 216
参考答案:\(0 < {a_1} < \frac{1}{2}\)
解析:
当
当
两式相减得
当
∴数列
∴数列
第12题
自然数列按如图规律排列,若 1 3 2 4 5 6 10 9 8 7 11 12 13 14 ……
A.\(\frac{{19}}{{21}}\)
B.\(\frac{{20}}{{21}}\)
C.\(\frac{{10}}{{11}}\)
D.\(\frac{{21}}{{22}}\)
参考答案:B
解析:
因为第 63 行的第一个数是:
而
所以
数字
即
故
故选:B
A.\(\frac{{1989}}{{{2^{10}}}}\)
B.\(\frac{{2019}}{{{2^{10}}}}\)
C.\(\frac{{1989}}{{{2^{11}}}}\)
D.\(\frac{{2019}}{{{2^{11}}}}\)
参考答案:C
解析:
由数列
故原数列第
所以第
故选:C.
参考答案:\(0\) 或 \(1\);\(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\)
解析:
(1) \(\because 0 \leqslant {a_1} \leqslant 1\) ,定义 \({a_{n + 1}} = \left\{ {\begin{array}{*{20}{l}} {2{a_n},0 \leqslant {a_n} < \frac{1}{2}} \\\ {2{a_n} - 1,{a_n} \geqslant \frac{1}{2}} \end{array}} \right.\).
若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,则 \({a_3} = 2{a_2} = {a_2}\) ,解得 \({a_2} = 0\);
若 \({a_2} \geqslant \frac{1}{2}\) ,则 \({a_3} = 2{a_2} - 1 = {a_2}\) ,解得 \({a_2} = 1\) .
综上所述, \({a_2} = 0\) 或 \(1\) ;
(2)①当 \(0 \leqslant {a_1} < \frac{1}{2}\) 时, \({a_2} = 2{a_1}\) .
(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} < \frac{1}{2} \Rightarrow 0 \leqslant {a_1} < \frac{1}{4}\) , \({a_3} = 2{a_2} = 4{a_1}\) ,
\(\because {a_1} < {a_3} = 4{a_1}\) , \(\therefore {a_1} > 0\) ,此时, \(0 < {a_1} < \frac{1}{4}\) ;
(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} \geqslant \frac{1}{2}\) ,得 \(\frac{1}{4} \leqslant {a_1} < \frac{1}{2}\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 1\) ,
\(\because {a_1} < {a_3} = 4{a_1} - 1\) , \(\therefore {a_1} > \frac{1}{3}\) ,此时, \(\frac{1}{3} < {a_1} < \frac{1}{2}\) ;
②当 \(\frac{1}{2} \leqslant {a_1} \leqslant 1\) 时, \({a_2} = 2{a_1} - 1\) .
(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} - 1 < \frac{1}{2} \Rightarrow \frac{1}{2} \leqslant {a_1} < \frac{3}{4}\) , \({a_3} = 2{a_2} = 4{a_1} - 2\) ,
\(\because {a_1} < {a_3} = 4{a_2} - 2\) , \(\therefore {a_1} > \frac{2}{3}\) ,此时, \(\frac{2}{3} < {a_1} < \frac{3}{4}\) ;
(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} - 1 \geqslant \frac{1}{2} \Rightarrow \frac{3}{4} \leqslant {a_1} \leqslant 1\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 3\) ,
\(\because {a_1} < {a_3} = 4{a_1} - 3\) , \(\therefore {a_1} > 1\) ,此时, \({a_1}\) 不存在.
综上所述, \({a_1}\) 的取值范围是 \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .
故答案为: \(0\) 或 \(1\) ; \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .
A.19
B.20
C.22
D.23
参考答案:A
解析:
由 \(\frac{{{a_{n + 1}}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 2\left( {n \geqslant 2,n \in {N^*}} \right)\) 得 , \(\frac{{{a_{n + 1}} - {a_n} + {a_n}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 2\)
则 \(\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 1,n \geqslant 2\) .
令 \(\frac{{{a_1}}}{{{a_2} - {a_1}}} = t + 1\) ,则数列 \(\left\{ {\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}}} \right\}\) 是公差为1,首项为\(t+1\)的等差数列,所以\(\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}} = n + t\) ,所以 \(\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{{n + t + 1}}{{n + t}}\) .
所以 \({a_n} = {a_1} \times \frac{{{a_2}}}{{{a_1}}} \times \frac{{{a_3}}}{{{a_2}}} \times \cdots \times \frac{{{a_n}}}{{{a_{n - 1}}}} = 3 \times \frac{{2 + t}}{{1 + t}} \times \frac{{3 + t}}{{2 + t}} \times \cdots \times \frac{{n + t}}{{n + t - 1}} = \frac{{3n + 3t}}{{1 + t}}(n \geqslant 2)\)
当 \(n=1\) 时, \({a_1} = 3\) ,也符合上式,所以 \({a_n} = \frac{{3n + 3t}}{{1 + t}}\left( {n \in {N^*}} \right)\) ;
所以 \({a_{20}} = \frac{{60 + 3t}}{{1 + t}} = 41\) ,解得 \(t = \frac{1}{2}\) ,
所以 \({a_n} = \frac{{3n + 3 \times \frac{1}{2}}}{{1 + \frac{1}{2}}}{\rm{ = 2}}n + 1\left( {n \in {N^*}} \right)\) ,
所以 \({a_9} = 19\) ,
故选A.
A.\(M < 1\)
B.\(M > \frac{4}{3}\)
C.\(M < 2\)
D.\(M > 2\)
参考答案:C
解析:
因
故选:C.
参考答案:\({2^n} - 1\)
解析:
即
{{a_2} - {a_1} = 2,} \\\
{{a_3} - {a_2} = {2^2},} \\\
{...} \\\
{{a_n} - {a_{n - 1}} = {2^{n - 1}}.}
\end{array}} \right.\)
各式相加得
故
故答案为:
参考答案:\({2^{n - 1}}\)
解析:
当
当
则数列
故答案为:
参考答案:\(t \geqslant 2\) 或 \(t \leqslant - 2\)
解析:
由
因为
因此可得
{g\left( { - 2} \right) \geqslant 3} \\\
{g\left( 2 \right) \geqslant 3}
\end{array}} \right.\)
{ - 2t + 2{t^2} - 1 \geqslant 3} \\\
{2t + 2{t^2} - 1 \geqslant 3}
\end{array}} \right.\)
故答案为
参考答案:2049
解析:
由题意可知
所以
所以
……
所以
又
所以
∴
所以
故答案为: