“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第61题


A.10

B.14

C.23

D.26


参考答案:D


解析:

解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列\(\{ {a_n}\} \)

由题意可知,等差数列\(\{ {a_n}\} \)\({a_2} = 17\),前5项和为100,

设公差为\(d(d > 0)\),前\(n\)项和为\({S_n}\)

\({S_5} = 5{a_3} = 100\),解得\({a_3} = 20\)

所以\(d = {a_3} - {a_2} = 3\)

所以公士出的钱数为\({a_5} = {a_3} + 2d = 20 + 2 \times 3 = 26\)

故选:D.


第62题


A.\(\frac{3}{{10}}\)

B.\(\frac{1}{3}\)

C.\(\frac{1}{8}\)

D.\(\frac{1}{9}\)


参考答案:A


解析:

\(\frac{{{S_3}}}{{{S_6}}} = \frac{1}{3}\),得\({S_6} = 3{S_3}\),设\({S_3} = m\),则\({S_6} = 3m\)

因为数列\(\left\{ {{a_n}} \right\}\)是等差数列,

所以\({S_3},{S_6} - {S_3},{S_9} - {S_6},{S_{12}} - {S_9}\),……,是以\(m\)为首项,\(m\)为公差的等差数列,

所以\({S_9} - {S_6} = 3m,{S_{12}} - {S_9} = 4m\)

所以\({S_9} = 6m\)\({S_{12}} = 10m\)

所以\(\frac{{{S_6}}}{{{S_{12}}}} = \frac{{3m}}{{10m}} = \frac{3}{{10}}\)

故选:A


第63题


A.4041

B.4042

C.4043

D.4044


参考答案:B


解析:

\({a_1} > 0\)\({a_{2021}}{a_{2022}} < 0\)

则在等差数列中\({a_{2021}} > 0,{a_{2022}} < 0,\)

\({a_{2021}} + {a_{2022}} > 0\)

可得:\({S_{4043}} = \frac{{{a_1} + {a_{4043}}}}{2} \times 4043 = 4043{a_{2022}} < 0\)

\({S_{4042}} = \frac{{{a_1} + {a_{4042}}}}{2} \times 4042 = 2021({a_{2021}} + {a_{2022}}) > 0\)

所以使前\(n\)项和\({S_n} > 0\)成立的最大自然数\(n\)\(4042\).

故选:B


第64题



参考答案:1122


解析:

\({a_n}{a_{n + 1}} = 2{S_n}\),则\(n \geqslant 2\)时,\({a_{n - 1}}{a_n} = 2{S_{n - 1}}\),两式相减得\(({a_{n + 1}} - {a_{n - 1}}){a_n} = 2{a_n}\)

因为\({a_n} > 0\),所以\({a_{n + 1}} - {a_{n - 1}} = 2\)

所以数列\(\{ {a_n}\} \)的奇数项与偶数项分别成等差数列,公差为2,

\({a_1}{a_2} = 2{S_1} = 2{a_1}\),而\({a_1} > 0\),所以\({a_2} = 2\),则\({a_{66}} = 66\)

所以\({a_2} + {a_4} + \cdots + {a_{66}} = \frac{{33(2 + 66)}}{2} = 1122\)

故答案为:1122.


第65题



参考答案:100


解析:


易知,要使\(f(n)\)取得最小值,正整数n必然在区间\([1,20]\)上,



\(f(n) = (n - 1) + (n - 2) + \cdots + 3 + 2 + 1 + 0 + 1 + 2 + 3 + \cdots + (20 - n)\)\( = \frac{{(n - 1)[1 + (n - 1)]}}{2} + \frac{{(20 - n)[1 + (20 - n)]}}{2}\)\( = {n^2} - 21n + 210\)\( = {\left( {n - \frac{{21}}{2}} \right)^2} + \frac{{399}}{4}\)



\(n \in {{\mathbf{N}}_ + }\),∴\(n = 10\)\(n = 11\)\(f(n)\)有最小值\(100\)



故答案为:100



第66题



参考答案:9


解析:

由题意得:\({a_m} = {S_m} - {S_{m - 1}} = 4\)\({a_{m + 1}} = {S_{m + 1}} - {S_m} = 5\)

则等差数列的公差\(d = {a_{m + 1}} - {a_m} = 1\)

\({a_m} = {a_1} + \left( {m - 1} \right)d = {a_1} + \left( {m - 1} \right) = 4\)\({S_m} = {a_1}m + \frac{{m\left( {m - 1} \right)}}{2} = 0\)

解得:\(m = 9\)\(m = 0\)(舍去),\({a_1} = - 4\)

故答案为:9


第67题



参考答案:\({n^2}\)


解析:


解:\(\because \)\(n⩾2\)\(2S_n^2 - 2{S_n}{a_n} + {a_n} = 0\)\(\therefore {{a}_{n}}=\frac {2{S}^{2}_{n}} {2{{S}_{n}}-1}\)



\(\therefore {S_n} - {S_{n - 1}} = \frac{{2S_n^2}}{{2{S_n} - 1}}\),整理可得\({S_n} - {S_{n - 1}} = - 2{S_n}{S_{n - 1}}\)



\(\therefore \frac{1}{{{S_n}}} - \frac{1}{{{S_{n - 1}}}} = 2\),数列\(\left\{ {\frac{1}{{{S_n}}}} \right\}\)是以1为首项,2为公差的等差数列,\(\therefore \frac{1}{{{S_n}}} = 2n - 1\)



\(\therefore \sum\limits_{i = 1}^n {\frac{1}{{{S_i}}} = \frac{{\left( {1 + 2n - 1} \right)n}}{2}} = {n^2}\).



故答案为:\({n^2}\)



第68题



参考答案:66


解析:

由图知:各图对应正方形个数为\({a_1} = 3,{a_2} = 6,{a_3} = 10,{a_4} = 15,{a_5} = 21,...\)

所以\({a_2} - {a_1} = 3,{a_3} - {a_2} = 4,{a_4} - {a_3} = 5,{a_5} - {a_4} = 6,...,{a_n} - {a_{n - 1}} = n + 1\)

\({a_n} - {a_1} = 3 + 4 + 5 + 6 + ... + n + 1 = \frac{{\left( {n - 1} \right)\left( {n + 4} \right)}}{2}\left( {n \geqslant 2} \right)\),则\({a_n} = \frac{{(n - 1)(n + 4)}}{2} + 3\)

所以\({a_{10}} = \frac{{9 \times 14}}{2} + 3 = 66\).

故答案为:66


第69题



参考答案:解:对任意的\(n \in {{\rm{N}}^ * }\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),

当\(n = 1\)时,则\({a}_{1}=5\),

当\(n \geqslant 2\)时,由\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\)可得\({a_1} + 2{a_2} + \cdots + \left( {n - 1} \right){a_{n - 1}} = 5\left( {n - 1} \right)\),

上述两个等式作差可得\(n{a_n} = 5\),\(\therefore {a_n} = \frac{5}{n}\),

\({a}_{1}=5\)满足\({a_n} = \frac{5}{n}\),因此,对任意的\(n \in {{\rm{N}}^ * }\),\({a_n} = \frac{5}{n}\).


第70题



参考答案:解:设数列\(\left\{ {{b_n}} \right\}\)的前\(n\)项和为\({T_n}\),
\(\because {b_m} + {b_{m + 1}} + {b_{m + 2}} = \frac{1}{{{a_m}}} = \frac{m}{5}\),
\(\therefore {T_{30}} = \left( {{b_1} + {b_2} + {b_3}} \right) + \left( {{b_4} + {b_5} + {b_6}} \right) + \cdots + \left( {{b_{28}} + {b_{29}} + {b_{30}}} \right)
= \frac{1}{5} + \frac{4}{5} + \cdots + \frac{{28}}{5}
= \frac{{10 \times \left( {\frac{1}{5} + \frac{{28}}{5}} \right)}}{2}\)\( = 29\).


第71题



参考答案:\( -4\)


解析:

因为 \( 2a+2\) 为 \( a\) 与 \( 3a+3\) 的等比中项,所以 \( \left\{\begin{array}{c}{\left(2a+2\right)}^{2}=a\left(3a+3\right)\\\ 2a+2\ne 0\end{array}\right.\)  ,解得 \( a=-4\) .


第72题



参考答案:证明:等比数列 \( \left\{{a}_{n}\right\}\) 中,对任意的 \( n\in {\mathit{N}}^{*}\) ,都有 \( {a}_{n}>0\) ,设其公比为 q ,则 \( \frac{{a}_{n}}{{a}_{n-1}}=q,(n\ge 2,q>0)\) ,故 \( {\mathit{lg}a}_{n}-{\mathit{lg}a}_{n-1}=\mathit{lg}\frac{{a}_{n}}{{a}_{n-1}}=\mathit{lg}q\) 为常数,故数列 \( \left\{\mathit{lg}{a}_{n}\right\}\) 为等差数列.


第73题

 \( {a}_{n}\)



参考答案:(1)设数列 \( \left\{{a}_{n}\right\}\) 的公比为 q ,

因为 \( {a}_{7}={a}_{4}{q}^{3}\) ,所以 \( {q}^{3}=\frac{{a}_{7}}{{a}_{4}}=\frac{12}{3}=4\) , \( q={4}^{\frac{1}{3}}\) ,

所以 \( {a}_{n}={a}_{4}{q}^{n-4}=3\times {\left({4}^{\frac{1}{3}}\right)}^{n-4}=3\times {4}^{\frac{n-4}{3}}\) .


第74题

\( {a}_{2}+{a}_{5}=18\)  \({a_3} + {a_6} = 9\) ,若 \( {a}_{n}=1\) ,求\(n\)的值.



参考答案:因为 \( {a}_{3}+{a}_{6}=\left({a}_{2}+{a}_{5}\right)q\) ,所以 \( q=\frac{9}{18}=\frac{1}{2}\) .

由 \( {a}_{1}q+{a}_{1}{q}^{4}=18\) ,得 \( {a}_{1}=\frac{18}{q+{q}^{4}}=\frac{18}{\frac{1}{2}+\frac{1}{16}}=32\) .

由 \( {a}_{n}={a}_{1}{q}^{n-1}=32\times {\left(\frac{1}{2}\right)}^{n-1}=1\) ,解得 \( n=6\) .


第75题



参考答案:设等比数列 \( \left\{{a}_{n}\right\}\) 的公比为 \( q\left(q>0\right)\) ,
由 \( {a}_{6}=2,{a}_{4}+{a}_{5}=12\) 得,
\( \left\{\begin{array}{c}{a}_{1}{q}^{5}
=2\\ {a}_{1}{q}^{3}+{a}_{1}{q}^{4}=12\end{array}\right.\) ,
解得: \( \left\{\begin{array}{c}{a}_{1}
=64\\ q=\frac{1}{2}\end{array}\right.\) ,
\( \therefore {a}_{n}=64\times {\left(\frac{1}{2}\right)}^{n-1}={2}^{7-n}\) ;


第76题



参考答案:\( {b}_{n}={a}_{1}{a}_{3}{a}_{5}\cdots {a}_{2n-1}={2}^{6}\times {2}^{4}\times {2}^{2}\times \cdots \times {2}^{8-2n}
={2}^{\frac{n\left(6+8-2n\right)}{2}}
={2}^{-(n-\frac{7}{2}{)}^{2}+\frac{49}{4}}\) ;
\( \therefore \)当 \( n\) 取3或4时,
\( {b}_{n}\)取得最大项 \( {2}^{12}\) .


第77题


A.\( {a}_{9}\cdot {a}_{10}<0\)

B.\( {a}_{9}>{a}_{10}\)

C.\( {b}_{10}>0\)

D.\( {b}_{9}>{b}_{10}\)


参考答案:AD


解析:


A\( \because \)等比数列 \( \left\{{a}_{n}\right\}\) 的公比 \(q = - \frac{2}{3}\)  \( \therefore {a}_{9}\)  \( {a}_{10}\) 异号, \( \therefore {a}_{9}{a}_{10}<0\)  ,故A正确;



B,因为不确定 \( {a}_{9}\)  \( {a}_{10}\) 的正负,所以不能确定 \( {a}_{9}\)  \( {a}_{10}\) 的大小关系,故B不正确;



C D , \( \because {a}_{9}\)  \( {a}_{10}\) 异号,且 \( {a}_{9}>{b}_{9}\)  \( {a}_{10}>{b}_{10}\)  \( \therefore {b}_{9}\)  \( {b}_{10}\) 中至少有一个数是负数,又 \( \because {b}_{1}=12>0\)  \( \therefore d<0\)   \( \therefore {b}_{9}>{b}_{10}\)  ,故D正确, \( \therefore {b}_{10}\) 一定是负数,即 \( {b}_{10}<0\)  ,故C不正确.



第78题


A.1, \( -2\) , 4 , \( -8\)

B.\( -\sqrt{2}\) , 2 , \( -2\sqrt{2}\) ,4

C.\( x\) , \({x^2}\) , \( {x}^{3}\) , \( {x}^{4}\)

D.\( {a}^{-1}\) , \( {a}^{-2}\) , \( {a}^{-3}\) , \({a^{ - 4}}\)


参考答案:ABD


解析:


对于A:1, \( -2\)  4  \( -8\) 中,由 \( \frac{-2}{1}=\frac{4}{-2}=\frac{-8}{4}=-2\) ,得数列是以 \( -2\) 为公比的等比数列;



对于B \( -\sqrt{2}\) ,2, \( -2\sqrt{2}\) ,4中,由 \( \frac{2}{-\sqrt{2}}=\frac{-2\sqrt{2}}{2}=\frac{4}{-2\sqrt{2}}=-\sqrt{2}\) ,得数列是以 \( -\sqrt{2}\) 为公比的等比数列;



对于C:当 \( x=0\) 时,不是等比数列.



对于D \( {a}^{-1}\)  \( {a}^{-2}\)  \( {a}^{-3}\)  \({a^{ - 4}}\) 中,由 \( \frac{{a}^{-2}}{{a}^{-1}}=\frac{{a}^{-3}}{{a}^{-2}}=\frac{{a}^{-4}}{{a}^{-3}}={a}^{-1}\) ,得数列是以 \( {a}^{-1}\) 为公比的等比数列.



第79题


A.数列1,2,6,18,…

B.数列 \( \left\{{a}_{n}\right\}\) 中, \( \frac{{a}_{2}}{{a}_{1}}=2\) , \( \frac{{a}_{3}}{{a}_{2}}=2\)

C.常数列 \( a\) , \( a\) ,…, \( a\) ,…

D.数列 \( \left\{{a}_{n}\right\}\) 中, \( \frac{{a}_{n-1}}{{a}_{n}}=q\left(q\ne 0\right)\)


参考答案:D


解析:

对于A \( \frac{2}{1}=2\)  \( \frac{6}{2}=3\ne 2\) ,故不是等比数列;

对于B,前3项是等比数列,多于3项时,无法判定,故不一定是等比数列;

对于C,当 \( a=0\) 时,不是等比数列;

对于D,该数列符合等比数列的定义,一定是等比数列.


第80题


A.\( \left\{{a}_{n}^{2}\right\}\) 是等比数列

B.\( \left\{{a}_{n}+{a}_{n+1}\right\}\) 是等比数列

C.\( \left\{\frac{1}{{a}_{n}}\right\}\) 是等比数列

D.\( \left\{{a}_{n}\cdot {a}_{n+1}\right\}\) 是等比数列


参考答案:ACD


解析:

因为 \( \left\{{a}_{n}\right\}\) 是等比数列,所以设其公比为 \( q\) ,即 \( \frac{{a}_{n+1}}{{a}_{n}}=q\) 

因为 \( \frac{{a}_{n+1}^{2}}{{a}_{n}^{2}}={q}^{2}\) ,所以 \( \left\{{{a}_{n}}^{2}\right\}\) 是等比数列,所以A选项正确;

因为 \( \frac{\frac{1}{{a}_{n+1}}}{\frac{1}{{a}_{n}}}=\frac{{a}_{n}}{{a}_{n+1}}=\frac{1}{q}\) ,所以 \( \left\{\frac{1}{{a}_{n}}\right\}\) 是等比数列,所以C选项正确;;

因为 \( \frac{{a}_{n+2}{a}_{n+1}}{{a}_{n+1}{a}_{n}}={q}^{2}\) ,所以 \( \left\{{a}_{n}{a}_{n+1}\right\}\) 是等比数列,所以D选项正确;

 \( q=-1\) 时, \( {a}_{n}+{a}_{n+1}=0\) ,所以此时 \( \{{a}_{n}+{a}_{n+1}\}\) 不是等比数列,所以B选项错误.


进入题库练习及模拟考试