第61题
《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )
A.10
B.14
C.23
D.26
参考答案:D
解析:
解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列\(\{ {a_n}\} \).
由题意可知,等差数列\(\{ {a_n}\} \)中\({a_2} = 17\),前5项和为100,
设公差为\(d(d > 0)\),前\(n\)项和为\({S_n}\),
则\({S_5} = 5{a_3} = 100\),解得\({a_3} = 20\),
所以\(d = {a_3} - {a_2} = 3\),
所以公士出的钱数为\({a_5} = {a_3} + 2d = 20 + 2 \times 3 = 26\),
故选:D.
第62题
已知数列\(\left\{ {{a_n}} \right\}\)是等差数列,\(\frac{{{S_3}}}{{{S_6}}} = \frac{1}{3}\),则\(\frac {{S}_{6}} {{S}_{12}}=\)( )
A.\(\frac{3}{{10}}\)
B.\(\frac{1}{3}\)
C.\(\frac{1}{8}\)
D.\(\frac{1}{9}\)
参考答案:A
解析:
由\(\frac{{{S_3}}}{{{S_6}}} = \frac{1}{3}\),得\({S_6} = 3{S_3}\),设\({S_3} = m\),则\({S_6} = 3m\),
因为数列\(\left\{ {{a_n}} \right\}\)是等差数列,
所以\({S_3},{S_6} - {S_3},{S_9} - {S_6},{S_{12}} - {S_9}\),……,是以\(m\)为首项,\(m\)为公差的等差数列,
所以\({S_9} - {S_6} = 3m,{S_{12}} - {S_9} = 4m\),
所以\({S_9} = 6m\),\({S_{12}} = 10m\),
所以\(\frac{{{S_6}}}{{{S_{12}}}} = \frac{{3m}}{{10m}} = \frac{3}{{10}}\),
故选:A
第63题
若\(\left\{ {{a_n}} \right\}\)是等差数列,首项\({a_1} > 0\),\({a_{2021}} + {a_{2022}} > 0\),\({a_{2021}}{a_{2022}} < 0\),则使前\(n\)项和\({S_n} > 0\)成立的最大自然数\(n\)是( )
A.4041
B.4042
C.4043
D.4044
参考答案:B
解析:
由\({a_1} > 0\),\({a_{2021}}{a_{2022}} < 0\),
则在等差数列中\({a_{2021}} > 0,{a_{2022}} < 0,\)
又\({a_{2021}} + {a_{2022}} > 0\)
可得:\({S_{4043}} = \frac{{{a_1} + {a_{4043}}}}{2} \times 4043 = 4043{a_{2022}} < 0\),
\({S_{4042}} = \frac{{{a_1} + {a_{4042}}}}{2} \times 4042 = 2021({a_{2021}} + {a_{2022}}) > 0\),
所以使前\(n\)项和\({S_n} > 0\)成立的最大自然数\(n\)是\(4042\).
故选:B
第64题
已知各项均为正数的数列\(\left \{ {{a}_{n}} \right \} \)的前\(n\)项和为\({S}_{n}\),且满足\({a}_{n}{a}_{n+1}=2{S}_{n}\left ( {n\in \text{N}^{*}} \right )\),则\({a}_{2}+{a}_{4}+{a}_{6}+…+{a}_{66}=\)___
参考答案:1122
解析:
\({a_n}{a_{n + 1}} = 2{S_n}\),则\(n \geqslant 2\)时,\({a_{n - 1}}{a_n} = 2{S_{n - 1}}\),两式相减得\(({a_{n + 1}} - {a_{n - 1}}){a_n} = 2{a_n}\),
因为\({a_n} > 0\),所以\({a_{n + 1}} - {a_{n - 1}} = 2\),
所以数列\(\{ {a_n}\} \)的奇数项与偶数项分别成等差数列,公差为2,
又\({a_1}{a_2} = 2{S_1} = 2{a_1}\),而\({a_1} > 0\),所以\({a_2} = 2\),则\({a_{66}} = 66\),
所以\({a_2} + {a_4} + \cdots + {a_{66}} = \frac{{33(2 + 66)}}{2} = 1122\).
故答案为:1122.
第65题
若函数\(f(n) = |n - 1| + |n - 2| + |n - 3| + \cdots + |n - 20|\),其中\(n\)是正整数,则\( f\left(n\right)\)的最小值是___.
参考答案:100
解析:
易知,要使\(f(n)\)取得最小值,正整数n必然在区间\([1,20]\)上,
则\(f(n) = (n - 1) + (n - 2) + \cdots + 3 + 2 + 1 + 0 + 1 + 2 + 3 + \cdots + (20 - n)\)\( = \frac{{(n - 1)[1 + (n - 1)]}}{2} + \frac{{(20 - n)[1 + (20 - n)]}}{2}\)\( = {n^2} - 21n + 210\)\( = {\left( {n - \frac{{21}}{2}} \right)^2} + \frac{{399}}{4}\)
∵\(n \in {{\mathbf{N}}_ + }\),∴\(n = 10\)或\(n = 11\)时\(f(n)\)有最小值\(100\).
故答案为:100
第66题
设等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)和为\({S_n},\)且\({S_{m - 1}} = - 4,{S_m} = 0,{S_{m + 1}} = 5,\)则\(m = \)___
参考答案:9
解析:
由题意得:\({a_m} = {S_m} - {S_{m - 1}} = 4\),\({a_{m + 1}} = {S_{m + 1}} - {S_m} = 5\),
则等差数列的公差\(d = {a_{m + 1}} - {a_m} = 1\),
则\({a_m} = {a_1} + \left( {m - 1} \right)d = {a_1} + \left( {m - 1} \right) = 4\),\({S_m} = {a_1}m + \frac{{m\left( {m - 1} \right)}}{2} = 0\),
解得:\(m = 9\)或\(m = 0\)(舍去),\({a_1} = - 4\),
故答案为:9
第67题
设数列\(\left\{ {{a_n}} \right\}\)前\(n\)项和为\({S_n}\),若\({a_1} = 1\),\(2S_n^2 - 2{S_n}{a_n} + {a_n} = 0\left( {n \geqslant 2{\rm{,}}n \in {{\rm{N}}^*}} \right)\),则\(\sum\limits_{i = 1}^n {\frac{1}{{{S_i}}} = } \)___.
参考答案:\({n^2}\)
解析:
解:\(\because \)当\(n⩾2\)时\(2S_n^2 - 2{S_n}{a_n} + {a_n} = 0\),\(\therefore {{a}_{n}}=\frac {2{S}^{2}_{n}} {2{{S}_{n}}-1}\),
\(\therefore {S_n} - {S_{n - 1}} = \frac{{2S_n^2}}{{2{S_n} - 1}}\),整理可得\({S_n} - {S_{n - 1}} = - 2{S_n}{S_{n - 1}}\),
\(\therefore \frac{1}{{{S_n}}} - \frac{1}{{{S_{n - 1}}}} = 2\),数列\(\left\{ {\frac{1}{{{S_n}}}} \right\}\)是以1为首项,2为公差的等差数列,\(\therefore \frac{1}{{{S_n}}} = 2n - 1\),
\(\therefore \sum\limits_{i = 1}^n {\frac{1}{{{S_i}}} = \frac{{\left( {1 + 2n - 1} \right)n}}{2}} = {n^2}\).
故答案为:\({n^2}\)
第68题
观察下列图形中小正方形的个数,则第10个图中小正方形的个数为___.

参考答案:66
解析:
由图知:各图对应正方形个数为\({a_1} = 3,{a_2} = 6,{a_3} = 10,{a_4} = 15,{a_5} = 21,...\)
所以\({a_2} - {a_1} = 3,{a_3} - {a_2} = 4,{a_4} - {a_3} = 5,{a_5} - {a_4} = 6,...,{a_n} - {a_{n - 1}} = n + 1\),
故\({a_n} - {a_1} = 3 + 4 + 5 + 6 + ... + n + 1 = \frac{{\left( {n - 1} \right)\left( {n + 4} \right)}}{2}\left( {n \geqslant 2} \right)\),则\({a_n} = \frac{{(n - 1)(n + 4)}}{2} + 3\),
所以\({a_{10}} = \frac{{9 \times 14}}{2} + 3 = 66\).
故答案为:66
第69题
求\(\left\{ {{a_n}} \right\}\)的通项公式;
参考答案:解:对任意的\(n \in {{\rm{N}}^ * }\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),
当\(n = 1\)时,则\({a}_{1}=5\),
当\(n \geqslant 2\)时,由\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\)可得\({a_1} + 2{a_2} + \cdots + \left( {n - 1} \right){a_{n - 1}} = 5\left( {n - 1} \right)\),
上述两个等式作差可得\(n{a_n} = 5\),\(\therefore {a_n} = \frac{5}{n}\),
\({a}_{1}=5\)满足\({a_n} = \frac{5}{n}\),因此,对任意的\(n \in {{\rm{N}}^ * }\),\({a_n} = \frac{5}{n}\).
第70题
求\(\left\{ {{b_n}} \right\}\)的前\(30\)项和.
参考答案:解:设数列\(\left\{ {{b_n}} \right\}\)的前\(n\)项和为\({T_n}\),
\(\because {b_m} + {b_{m + 1}} + {b_{m + 2}} = \frac{1}{{{a_m}}} = \frac{m}{5}\),
\(\therefore {T_{30}} = \left( {{b_1} + {b_2} + {b_3}} \right) + \left( {{b_4} + {b_5} + {b_6}} \right) + \cdots + \left( {{b_{28}} + {b_{29}} + {b_{30}}} \right)
= \frac{1}{5} + \frac{4}{5} + \cdots + \frac{{28}}{5}
= \frac{{10 \times \left( {\frac{1}{5} + \frac{{28}}{5}} \right)}}{2}\)\( = 29\).
第71题
已知等比数列 \( \left\{{a}_{n}\right\}\) 中的前三项为 \( a\) 、 \( 2a+2\) 、 \( 3a+3\) ,则实数 \( a\) 的值为___.
参考答案:\( -4\)
解析:
因为 \( 2a+2\) 为 \( a\) 与 \( 3a+3\) 的等比中项,所以 \( \left\{\begin{array}{c}{\left(2a+2\right)}^{2}=a\left(3a+3\right)\\\ 2a+2\ne 0\end{array}\right.\) ,解得 \( a=-4\) .
第72题
在等比数列 \( \left\{{a}_{n}\right\}\) 中,如果对任意的 \( n\in {\mathit{N}}^{*}\) ,都有 \( {a}_{n}>0\) ,求证:数列 \( \left\{\mathit{lg}{a}_{n}\right\}\) 为等差数列.
参考答案:证明:等比数列 \( \left\{{a}_{n}\right\}\) 中,对任意的 \( n\in {\mathit{N}}^{*}\) ,都有 \( {a}_{n}>0\) ,设其公比为 q ,则 \( \frac{{a}_{n}}{{a}_{n-1}}=q,(n\ge 2,q>0)\) ,故 \( {\mathit{lg}a}_{n}-{\mathit{lg}a}_{n-1}=\mathit{lg}\frac{{a}_{n}}{{a}_{n-1}}=\mathit{lg}q\) 为常数,故数列 \( \left\{\mathit{lg}{a}_{n}\right\}\) 为等差数列.
第73题
求 \( {a}_{n}\);
参考答案:(1)设数列 \( \left\{{a}_{n}\right\}\) 的公比为 q ,
因为 \( {a}_{7}={a}_{4}{q}^{3}\) ,所以 \( {q}^{3}=\frac{{a}_{7}}{{a}_{4}}=\frac{12}{3}=4\) , \( q={4}^{\frac{1}{3}}\) ,
所以 \( {a}_{n}={a}_{4}{q}^{n-4}=3\times {\left({4}^{\frac{1}{3}}\right)}^{n-4}=3\times {4}^{\frac{n-4}{3}}\) .
第74题
\( {a}_{2}+{a}_{5}=18\) , \({a_3} + {a_6} = 9\) ,若 \( {a}_{n}=1\) ,求\(n\)的值.
参考答案:因为 \( {a}_{3}+{a}_{6}=\left({a}_{2}+{a}_{5}\right)q\) ,所以 \( q=\frac{9}{18}=\frac{1}{2}\) .
由 \( {a}_{1}q+{a}_{1}{q}^{4}=18\) ,得 \( {a}_{1}=\frac{18}{q+{q}^{4}}=\frac{18}{\frac{1}{2}+\frac{1}{16}}=32\) .
由 \( {a}_{n}={a}_{1}{q}^{n-1}=32\times {\left(\frac{1}{2}\right)}^{n-1}=1\) ,解得 \( n=6\) .
第75题
求数列 \( \left\{{a}_{n}\right\}\) 的通项公式;
参考答案:设等比数列 \( \left\{{a}_{n}\right\}\) 的公比为 \( q\left(q>0\right)\) ,
由 \( {a}_{6}=2,{a}_{4}+{a}_{5}=12\) 得,
\( \left\{\begin{array}{c}{a}_{1}{q}^{5}
=2\\ {a}_{1}{q}^{3}+{a}_{1}{q}^{4}=12\end{array}\right.\) ,
解得: \( \left\{\begin{array}{c}{a}_{1}
=64\\ q=\frac{1}{2}\end{array}\right.\) ,
\( \therefore {a}_{n}=64\times {\left(\frac{1}{2}\right)}^{n-1}={2}^{7-n}\) ;
第76题
设 \( {b}_{n}={a}_{1}{a}_{3}{a}_{5}\dots {a}_{2n-1},n\in {\mathit{N}}^{*}\) ,求数列 \( \left\{{b}_{n}\right\}\) 的最大项.
参考答案:\( {b}_{n}={a}_{1}{a}_{3}{a}_{5}\cdots {a}_{2n-1}={2}^{6}\times {2}^{4}\times {2}^{2}\times \cdots \times {2}^{8-2n}
={2}^{\frac{n\left(6+8-2n\right)}{2}}
={2}^{-(n-\frac{7}{2}{)}^{2}+\frac{49}{4}}\) ;
\( \therefore \)当 \( n\) 取3或4时,
\( {b}_{n}\)取得最大项 \( {2}^{12}\) .
第77题
已知等比数列 \( \left\{{a}_{n}\right\}\) 的公比 \(q = - \frac{2}{3}\) ,等差数列 \( \left\{{b}_{n}\right\}\) 的首项 \( {b}_{1}=12\) ,若\( {a}_{9}>{b}_{9}\) 且 \( {a}_{10}>{b}_{10}\) ,则以下结论正确的有( )
A.\( {a}_{9}\cdot {a}_{10}<0\)
B.\( {a}_{9}>{a}_{10}\)
C.\( {b}_{10}>0\)
D.\( {b}_{9}>{b}_{10}\)
参考答案:AD
解析:
对A,\( \because \)等比数列 \( \left\{{a}_{n}\right\}\) 的公比 \(q = - \frac{2}{3}\) , \( \therefore {a}_{9}\) 和 \( {a}_{10}\) 异号, \( \therefore {a}_{9}{a}_{10}<0\) ,故A正确;
对B,因为不确定 \( {a}_{9}\) 和 \( {a}_{10}\) 的正负,所以不能确定 \( {a}_{9}\) 和 \( {a}_{10}\) 的大小关系,故B不正确;
对C D , \( \because {a}_{9}\) 和 \( {a}_{10}\) 异号,且 \( {a}_{9}>{b}_{9}\) 且 \( {a}_{10}>{b}_{10}\) , \( \therefore {b}_{9}\) 和 \( {b}_{10}\) 中至少有一个数是负数,又 \( \because {b}_{1}=12>0\) , \( \therefore d<0\) \( \therefore {b}_{9}>{b}_{10}\) ,故D正确, \( \therefore {b}_{10}\) 一定是负数,即 \( {b}_{10}<0\) ,故C不正确.
第78题
A.1, \( -2\) , 4 , \( -8\)
B.\( -\sqrt{2}\) , 2 , \( -2\sqrt{2}\) ,4
C.\( x\) , \({x^2}\) , \( {x}^{3}\) , \( {x}^{4}\)
D.\( {a}^{-1}\) , \( {a}^{-2}\) , \( {a}^{-3}\) , \({a^{ - 4}}\)
参考答案:ABD
解析:
对于A:1, \( -2\) , 4 , \( -8\) 中,由 \( \frac{-2}{1}=\frac{4}{-2}=\frac{-8}{4}=-2\) ,得数列是以 \( -2\) 为公比的等比数列;
对于B: \( -\sqrt{2}\) ,2, \( -2\sqrt{2}\) ,4中,由 \( \frac{2}{-\sqrt{2}}=\frac{-2\sqrt{2}}{2}=\frac{4}{-2\sqrt{2}}=-\sqrt{2}\) ,得数列是以 \( -\sqrt{2}\) 为公比的等比数列;
对于C:当 \( x=0\) 时,不是等比数列.
对于D: \( {a}^{-1}\) , \( {a}^{-2}\) , \( {a}^{-3}\) , \({a^{ - 4}}\) 中,由 \( \frac{{a}^{-2}}{{a}^{-1}}=\frac{{a}^{-3}}{{a}^{-2}}=\frac{{a}^{-4}}{{a}^{-3}}={a}^{-1}\) ,得数列是以 \( {a}^{-1}\) 为公比的等比数列.
第79题
A.数列1,2,6,18,…
B.数列 \( \left\{{a}_{n}\right\}\) 中, \( \frac{{a}_{2}}{{a}_{1}}=2\) , \( \frac{{a}_{3}}{{a}_{2}}=2\)
C.常数列 \( a\) , \( a\) ,…, \( a\) ,…
D.数列 \( \left\{{a}_{n}\right\}\) 中, \( \frac{{a}_{n-1}}{{a}_{n}}=q\left(q\ne 0\right)\)
参考答案:D
解析:
对于A, \( \frac{2}{1}=2\) , \( \frac{6}{2}=3\ne 2\) ,故不是等比数列;
对于B,前3项是等比数列,多于3项时,无法判定,故不一定是等比数列;
对于C,当 \( a=0\) 时,不是等比数列;
对于D,该数列符合等比数列的定义,一定是等比数列.
第80题
若 \( \left\{{a}_{n}\right\}\) 是等比数列,则( )
A.\( \left\{{a}_{n}^{2}\right\}\) 是等比数列
B.\( \left\{{a}_{n}+{a}_{n+1}\right\}\) 是等比数列
C.\( \left\{\frac{1}{{a}_{n}}\right\}\) 是等比数列
D.\( \left\{{a}_{n}\cdot {a}_{n+1}\right\}\) 是等比数列
参考答案:ACD
解析:
因为 \( \left\{{a}_{n}\right\}\) 是等比数列,所以设其公比为 \( q\) ,即 \( \frac{{a}_{n+1}}{{a}_{n}}=q\) .
因为 \( \frac{{a}_{n+1}^{2}}{{a}_{n}^{2}}={q}^{2}\) ,所以 \( \left\{{{a}_{n}}^{2}\right\}\) 是等比数列,所以A选项正确;
因为 \( \frac{\frac{1}{{a}_{n+1}}}{\frac{1}{{a}_{n}}}=\frac{{a}_{n}}{{a}_{n+1}}=\frac{1}{q}\) ,所以 \( \left\{\frac{1}{{a}_{n}}\right\}\) 是等比数列,所以C选项正确;;
因为 \( \frac{{a}_{n+2}{a}_{n+1}}{{a}_{n+1}{a}_{n}}={q}^{2}\) ,所以 \( \left\{{a}_{n}{a}_{n+1}\right\}\) 是等比数列,所以D选项正确;
当 \( q=-1\) 时, \( {a}_{n}+{a}_{n+1}=0\) ,所以此时 \( \{{a}_{n}+{a}_{n+1}\}\) 不是等比数列,所以B选项错误.