“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列\(\left\{ {{a_n}} \right\}\)满足\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),数列\(\left\{ {{b_n}} \right\}\)满足对任意正整数\(m\)均有\({b_m} + {b_{m + 1}} + {b_{m + 2}} = \frac{1}{{{a_m}}}\)成立.

\(\left\{ {{a_n}} \right\}\)的通项公式;



知识点:第四章 数列


参考答案:解:对任意的\(n \in {{\rm{N}}^ * }\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),

当\(n = 1\)时,则\({a}_{1}=5\),

当\(n \geqslant 2\)时,由\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\)可得\({a_1} + 2{a_2} + \cdots + \left( {n - 1} \right){a_{n - 1}} = 5\left( {n - 1} \right)\),

上述两个等式作差可得\(n{a_n} = 5\),\(\therefore {a_n} = \frac{5}{n}\),

\({a}_{1}=5\)满足\({a_n} = \frac{5}{n}\),因此,对任意的\(n \in {{\rm{N}}^ * }\),\({a_n} = \frac{5}{n}\).

进入考试题库