“微信扫一扫”进入题库练习及模拟考试
已知数列
求
参考答案:解:对任意的\(n \in {{\rm{N}}^ * }\),\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),
当\(n = 1\)时,则\({a}_{1}=5\),
当\(n \geqslant 2\)时,由\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\)可得\({a_1} + 2{a_2} + \cdots + \left( {n - 1} \right){a_{n - 1}} = 5\left( {n - 1} \right)\),
上述两个等式作差可得\(n{a_n} = 5\),\(\therefore {a_n} = \frac{5}{n}\),
\({a}_{1}=5\)满足\({a_n} = \frac{5}{n}\),因此,对任意的\(n \in {{\rm{N}}^ * }\),\({a_n} = \frac{5}{n}\).