“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第21题



参考答案:\({a_n} = \frac{1}{3}{\left( {\frac{5}{4}} \right)^{n - 1}} + \frac{2}{3}\)


解析:

由题意可知,\({a_1} = 1\),第 \(n + 1\) 年后, \({a_{n + 1}} = \left( {1 + 25\% } \right){a_n} - \frac{1}{6} = \frac{5}{4}{a_n} - \frac{1}{6}\) ,

则 \({a_{n + 1}} - \frac{2}{3} = \frac{5}{4}\left( {{a_n} - \frac{2}{3}} \right)\) ,所以,数列 \(\left\{ {{a_n} - \frac{2}{3}} \right\}\) 是以 \(\frac{1}{3}\) 为首项,以 \(\frac{5}{4}\)为公比的等比数列,

则 \({a_n} - \frac{2}{3} = \frac{1}{3} \cdot {\left( {\frac{5}{4}} \right)^{n - 1}}\) ,因此, \({a_n} = \frac{1}{3}{\left( {\frac{5}{4}} \right)^{n - 1}} + \frac{2}{3}\) .

故答案为: \({a_n} = \frac{1}{3}{\left( {\frac{5}{4}} \right)^{n - 1}} + \frac{2}{3}\) .


第22题



参考答案:证明
∵\({a_{n + 1}} = {S_{n + 1}} - {S_n}\) ,
\(S_n^2 = a_{n + 1}^2 - \lambda {S_{n + 1}}\) ,
∴ \(S_n^2 = {\left( {{S_{n + 1}} - {S_n}} \right)^2} - \lambda {S_{n + 1}}\) ,
∴ \({S_{n + 1}}\left( {{S_{n + 1}} - 2{S_n} - \lambda } \right) = 0\) .
∵ \({a_n} > 0\) ,
∴ \({S_{n + 1}} > 0\) ,
∴ \({S_{n + 1}} - 2{S_n} - \lambda = 0\) ,
\({S_{n + 1}} = 2{S_n} + \lambda \) .


第23题



参考答案:∵ \({S_{n + 1}} = 2{S_n} + \lambda \) ,
\({S_n} = 2{S_{n - 1}} + \lambda \left( {n \geqslant 2} \right)\) ,
相减得 \({a_{n + 1}} = 2{a_n}\left( {n \geqslant 2} \right)\) ,
∴ \(\left\{ {{a_n}} \right\}\) 从第二项起成等比数列.
∵ \({S_2} = 2{S_1} + \lambda \) ,
即 \({a_2} + {a_1} = 2{a_1} + \lambda \) ,
∴ \({a_2} = 1 + \lambda > 0\) ,
∴ \(\lambda > - 1\) ,
∴ \({a_n} = \left\{ {\begin{array}{*{20}{l}}
{1,n = 1,} \\
{\left( {\lambda + 1} \right){2^{n - 2}},n \geqslant 2.}
\end{array}} \right.\) 若使 \(\left\{ {{a_n}} \right\}\) 是等比数列,
则 \({a_1}{a_3} = a_2^2\) ,
∴ \(2\left( {\lambda + 1} \right) = {\left( {\lambda + 1} \right)^2}\) ,
∴ \(\lambda = - 1\) (舍)或 \(\lambda = 1\) .


第24题



参考答案:∵ \(p = \frac{1}{2}\) , \(q = 2\) ,
∴ \({a_{n + 1}} = \frac{1}{2} \cdot {a_n} + \frac{2}{{{a_n}}}\) ,
\(a_n^2 - 2{a_n}{a_{n + 1}} + 4 = 0\) ,∵ \({a_3} = \frac{{41}}{{20}}\) ,
∴ \(a_2^2 - \frac{{41}}{{10}}{a_2} + 4 = 0\) ,
解得 \({a_2} = \frac{5}{2}\) 或 \({a_2} = \frac{8}{5}\) ,
当 \({a_2} = \frac{5}{2}\) 时,
\(a_1^2 - 5{a_1} + 4 = 0\) ,
解得 \({a_1} = 1\) 或 \({a_1} = 4\) ;
\({a_2} = \frac{8}{5}\) 时,
\(a_1^2 - \frac{{16}}{5}{a_1} + 4 = 0\) ,
无解.∴ \({a_1} = 1\) 或 \({a_1} = 4\) ;


第25题



参考答案:∵ \(p \cdot q = 0\) ,且\(p,q\) 均为非负实数且不同时为0.

∴ \(p = 0,q > 0\) 或 \(q = 0,p > 0\) ,

当 \(p = 0,q > 0\) 时, \({a_{n + 1}} = \frac{q}{{{a_n}}}\left( {n \in {{\rm{N}}^*}} \right)\) ,

由 \({a}_{1}=5\) , ∴\({a_2} = \frac{q}{5}\) , \({a_3} = \frac{q}{{{a_2}}} = 5\) ,…, \({a_n} = \left\{ {\begin{array}{*{20}{c}} {5,n = 2k - 1} \\ {\frac{q}{5},n = 2k} \end{array}\left( {k \in {N_ + }} \right)} \right.\) ,

\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{25n + qn - q + 25}}{{10}},n = 2k - 1} \\ {\frac{{25n + qn}}{{10}},n = 2k} \end{array}(k \in {{\rm{N}}_ + })} \right.\) ;

当 \(q = 0,p > 0\) 时, \({a_{n + 1}} = p{a_n}\) ,是以 \({a}_{1}=5\) 为首项,以 \(p\) 为公比的等比数列,

\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{5\left( {{p^n} - 1} \right)}}{{p - 1}},p \ne 1} \\ {5n,p = 1} \end{array}} \right.\) .


第26题



参考答案:由 \({a_{n + 1}} - 2{a_n} = {2^{n + 1}}\) ,

可得 \(\frac {{a}_{n+1}} {{2}^{n+1}}-\frac {{a}_{n}} {{2}^{n}}=1\),

则数列 \(\left\{ {\frac{{{a_n}}}{{{2^n}}}} \right\}\) 是首项为 \(\frac {{a}_{1}} {2}=1\),公差为 1 的等差数列,

则 \(\frac {{a}_{n}} {{2}^{n}}=1+n-1=n\),即 \({a_n} = n \cdot {2^n}\) ;


第27题



参考答案:\({b_n} = \frac{{n + 2}}{{n{a_{n + 1}}}} = \frac{{n + 2}}{{n\left( {n + 1} \right) \cdot {2^{n + 1}}}} = \frac{1}{{n \cdot {2^n}}} - \frac{1}{{\left( {n + 1} \right) \cdot {2^{n + 1}}}}\) ,
\({T_n} = \frac{1}{{1 \cdot 2}} - \frac{1}{{2 \cdot {2^2}}} + \frac{1}{{2 \cdot {2^2}}} - \frac{1}{{3 \cdot {2^3}}} + \ldots + \frac{1}{{n \cdot {2^n}}} - \frac{1}{{(n + 1) \cdot {2^{n + 1}}}}\)\( = \frac{1}{2} - \frac{1}{{(n + 1) \cdot {2^{n + 1}}}}\) .


第28题


A.充分非必要条件;

B.必要非充分条件;

C.充要条件;

D.既非充分又非必要条件.


参考答案:C


解析:

解:若数列\(\left\{ {{a_n}} \right\}\)的通项公式为\({a_n} = kn + b\),则\({a_{n + 1}} - {a_n} = k(n + 1) + b - (kn + b) = k\)(\(k\)为常数),由等差数列的定义可得数列\(\left\{ {{a_n}} \right\}\)为等差数列;

若数列\(\left\{ {{a_n}} \right\}\)为等差数列,设首项为\({a_1}\),公差为\(d\),则通项公式为\({a_n} = {a_1} + (n - 1)d = nd + \left( {{a_1} - d} \right)\)

\(d = k,{a_1} - d = b\),则数列\(\left\{ {{a_n}} \right\}\)的通项公式可写为\({a_n} = kn + b\)\((k,b\)为常数,\(n \in {N^*})\).

所以对于数列\(\left\{ {{a_n}} \right\}\),“\({a_n} = kn + b\)”是“数列\(\left\{ {{a_n}} \right\}\)为等差数列”的充要条件.

故选:C.


第29题


A.8

B.10

C.14

D.16


参考答案:D


解析:

设公差为\(d\)

\(\left\{ {\begin{array}{*{20}{l}}
{{a_1} + 3d + {a_1} + 7d = 20} \\\
{{a_1} + 6d = 12}
\end{array}} \right.\)
,解得\(\left\{ {\begin{array}{*{20}{l}}
{{a_1} = 0} \\\
{d = 2}
\end{array}} \right.\)

所以\({a_9} = {a_1} + 8d = 16\).

故选:D.


第30题


A.0,0,0,…,0,…

B.\(-2,-1,0,\cdots ,n-3,\cdots \)

C.\(1,3,5,\cdots ,2n-1,\cdots \)

D.0,1,3,…,\(\frac{{{n^2} - n}}{2}\),…


参考答案:D


解析:

选项A中,后项减前项所得差均为0,是等差数列;

选项B中,后项减前项所得差都是1,是等差数列;

选项C中,后项减前项所得差都是2,是等差数列;

选项D中,\(1 - 0 \ne 3 - 1\),不是等差数列,

故选:D.


第31题


A.2

B.4

C.6

D.8


参考答案:D


解析:

因为\(10 = {a_4} + \frac{1}{2}{a_7} + {a_{10}} = \frac{1}{2}{a_7} + 2{a_7}\),解得:\({a_7} = 4\),所以\({a_3} + {a_{11}} = 2{a_7} = 8\)

故选:D.


第32题


A.\(a - d\),\(a\),\(a + d\)

B.2,4,6,8,…,\(2\left( {n - 1} \right)\),\(2n\)

C.\(a - 2d\),\(a - d\),\(a + d\),\(a + 2d\left( {d \ne 0} \right)\)

D.\({a_{n - 1}} = {a_n} - \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\)


参考答案:ABD


解析:

解:对于A选项,由于\(\left( {a + d} \right) - a = a - \left( {a - d} \right) = d\),故是等差数列,正确;

对于B选项,2,4,6,8,…,\(2\left( {n - 1} \right)\)\(2n\)中,\(2n - 2\left( {n - 1} \right) = 2\),是等差数列,正确;

对于C选项,因为\(a - d - \left( {a - 2d} \right) = d\)\(\left( {a + d} \right) - \left( {a - d} \right) = 2d\),又\(d \ne 0\),即第3项与第2项的差不等于第2项与第1项的差,故不是等差数列;

对于D选项,由\({a_{n - 1}} = {a_n} - \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\)\({a_n} - {a_{n - 1}} = \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\),满足等差数列定义.

故选:ABD.


第33题


A.\(\left\{ {{a_n} + 3} \right\}\)

B.\(\left\{ {a_n^2} \right\}\)

C.\(\left\{ {{a_{n - 1}} + {a_n}} \right\}\)

D.\(\left\{ {2{a_n} + n} \right\}\)


参考答案:ACD


解析:


设等差数列\(\left\{ {{a_n}} \right\}\)的公差为d,当\(n \geqslant 2\)时,\({a_n} - {a_{n - 1}} = d\).



对于A,\({a_{n + 1}} + 3 - \left( {{a_n} + 3} \right) = {a_{n + 1}} - {a_n} = d\),为常数, 



因此\(\left\{ {{a_n} + 3} \right\}\)是等差数列;故A正确



对于B,\(a_{n + 1}^2 - a_n^2 = d\left( {{a_{n + 1}} + {a_n}} \right) = d\left[ {2{a_1} + \left( {2n - 1} \right)d} \right]\),不为常数,



因此\(\left\{ {a_n^2} \right\}\)不是等差数列;故B错误



对于C,\(\left( {{a_{n + 2}} + {a_{n + 1}}} \right) - \left( {{a_{n + 1}} + {a_n}} \right) = {a_{n + 2}} - {a_n} = 2d\),为常数,



因此\(\left\{ {{a_{n + 1}} + {a_n}} \right\}\)是等差数列;故C正确



对于D,\(2{a_{n + 1}} + \left( {n + 1} \right) - \left( {2{a_n} + n} \right) = 2\left( {{a_{n + 1}} - {a_n}} \right) + 1 = 2d + 1\),为常数,



因此\(\left\{ {2{a_n} + n} \right\}\)是等差数列,故D正确



故选:ACD.



第34题


A.0,0,0,0,0,…

B.1,11,111,1,111,…

C.-5,-3,-1,1,3,…

D.1,2,3,5,8,…


参考答案:AC


解析:

根据等差数列的定义可知A,C是等差数列.

故选:AC


第35题



参考答案:1


解析:

因为\({a_4} = {a_1} + {a_2}\),所以\({a_1} + 3d = {a_1} + {a_1} + d\),即\({a_1} = 2d\).

因为\({a_1} \ne 0\),则\(d \ne 0\)

所以\(\frac{{{a_5}}}{{{a_1} + {a_3}}} = \frac{{{a_1} + 4d}}{{{a_1} + {a_1} + 2d}} = \frac{{6d}}{{6d}} = 1\).

故答案为:1


第36题



参考答案:40


解析:


因为\({c_n} - {c_{n - 1}} = {a_n} + {b_n} - \left( {{a_{n - 1}} + {b_{n - 1}}} \right) = {a_n} - {a_{n - 1}} + {b_n} - {b_{n - 1}} = d + e\)



所以数列\(\{ {c_n}\} \)是以\(a + b\)为首项,\(d+e\)为公差的等差数列,



因为\({c_1} = 4\)\({c_2} = 8\),所以\(d + e = {c_2} - {c_1} = 8 - 4 = 4\)



所以\({c_{10}} = 4 + 4 \times 9 = 40\).



故答案为:40



第37题



参考答案:\({a_n} = 3n + 2\)


解析:


数列\(\left\{ {{a_n}} \right\}\)中,因\({a}_{n+1}={a}_{n}+3\),即\({a_{n + 1}} - {a_n} = 3\),因此,数列\(\left\{ {{a_n}} \right\}\)是等差数列,公差\(d=3\)



所以数列\(\left\{ {{a_n}} \right\}\)的通项公式是\({a_n} = {a_1} + (n - 1)d = 3n + 2\).



故答案为:\({a_n} = 3n + 2\)



第38题


A.\( -\frac{\sqrt{3}}{2}\)

B.\( -\frac{1}{2}\)

C.\( \frac{1}{2}\)

D.\( \frac{\sqrt{3}}{2}\)


参考答案:B


解析:


由题意知,\( 2{a}_{n+1}={a}_{n}+{a}_{n+2}\)



由等差数列的等差中项,得数列\( \left\{{a}_{n}\right\}\)为等差数列,



\( {a}_{3}+{a}_{8}+{a}_{13}=2\pi \),所以\( {a}_{8}=\frac{2\pi }{3}\)



\( {a}_{7}+{a}_{9}=2{a}_{8}=\frac{4\pi }{3}\)



所以\(\cos {\left ( {{a}_{7}+{a}_{9}} \right )}=\cos {\frac {4\pi } {3}}=-\cos {\frac {\pi } {3}}=-\frac {1} {2}\).



故选:B



第39题


A.\( \frac{9}{2}\)

B.\( 9\)

C.\( 10\)

D.\( 12\)


参考答案:B


解析:

\( \frac{1}{{a}_{1}}+\frac{1}{{a}_{5}}=\frac{10}{9}\)得:\( \frac{{a}_{1}+{a}_{5}}{{a}_{1}{a}_{5}}=\frac{2{a}_{3}}{{a}_{1}{a}_{5}}=\frac{10}{9}\)\( \therefore {a}_{1}\cdot {a}_{5}=\frac{9{a}_{3}}{5}=9\).

故选:B


第40题


A.\( 3\)

B.\( \frac{1}{13}\)

C.\(\frac{2}{{13}}\)

D.\( \frac{2}{19}\)


参考答案:D


解析:

\( n\)为奇数时,\( {a}_{n+2}-{a}_{n}=2\),即数列\( \left\{{a}_{n}\right\}\)中的奇数项依次构成首项为\( 1\),公差为\( 2\)的等差数列,

所以,\( {a}_{19}=1+\left(10-1\right)\times 2=19\)

\( n\)为偶数时,\( {a}_{n+2}+{a}_{n}=2\),则\( {a}_{n+4}+{a}_{n+2}=2\),两式相减得\( {a}_{n+4}-{a}_{n}=0\)

所以,\( {a}_{18}={a}_{4\times 4+2}={a}_{2}=2\)

\( \frac{{a}_{18}}{{a}_{19}}=\frac{2}{19}\)

故选:D


进入题库练习及模拟考试