解:若数列\(\left\{ {{a_n}} \right\}\)的通项公式为\({a_n} = kn + b\),则\({a_{n + 1}} - {a_n} = k(n + 1) + b - (kn + b) = k\)(\(k\)为常数),由等差数列的定义可得数列\(\left\{ {{a_n}} \right\}\)为等差数列;
若数列\(\left\{ {{a_n}} \right\}\)为等差数列,设首项为\({a_1}\),公差为\(d\),则通项公式为\({a_n} = {a_1} + (n - 1)d = nd + \left( {{a_1} - d} \right)\),
令\(d = k,{a_1} - d = b\),则数列\(\left\{ {{a_n}} \right\}\)的通项公式可写为\({a_n} = kn + b\),\((k,b\)为常数,\(n \in {N^*})\).
所以对于数列\(\left\{ {{a_n}} \right\}\),“\({a_n} = kn + b\)”是“数列\(\left\{ {{a_n}} \right\}\)为等差数列”的充要条件.
故选:C.