“微信扫一扫”进入题库练习及模拟考试
数列\(\left\{ {{a_n}} \right\}\)中,\({a}_{1}=5\),\({a}_{n+1}={a}_{n}+3\),那么这个数列的通项公式是___.
参考答案:\({a_n} = 3n + 2\)
解析:
数列\(\left\{ {{a_n}} \right\}\)中,因\({a}_{n+1}={a}_{n}+3\),即\({a_{n + 1}} - {a_n} = 3\),因此,数列\(\left\{ {{a_n}} \right\}\)是等差数列,公差\(d=3\),
所以数列\(\left\{ {{a_n}} \right\}\)的通项公式是\({a_n} = {a_1} + (n - 1)d = 3n + 2\).
故答案为:\({a_n} = 3n + 2\)
进入考试题库