当\( n\)为奇数时,\( {a}_{n+2}-{a}_{n}=2\),即数列\( \left\{{a}_{n}\right\}\)中的奇数项依次构成首项为\( 1\),公差为\( 2\)的等差数列,
所以,\( {a}_{19}=1+\left(10-1\right)\times 2=19\),
当\( n\)为偶数时,\( {a}_{n+2}+{a}_{n}=2\),则\( {a}_{n+4}+{a}_{n+2}=2\),两式相减得\( {a}_{n+4}-{a}_{n}=0\),
所以,\( {a}_{18}={a}_{4\times 4+2}={a}_{2}=2\),
故\( \frac{{a}_{18}}{{a}_{19}}=\frac{2}{19}\),
故选:D