“微信扫一扫”进入题库练习及模拟考试
已知数列\( \left\{{a}_{n}\right\}\)满足\( 2{a}_{n+1}={a}_{n}+{a}_{n+2}\left(n\in {\mathit{N}}^{*}\right)\),且\( {a}_{3}+{a}_{8}+{a}_{13}=2\pi \),则\( \text{cos}\left({a}_{7}+{a}_{9}\right)=\)( )
A.\( -\frac{\sqrt{3}}{2}\)
B.\( -\frac{1}{2}\)
C.\( \frac{1}{2}\)
D.\( \frac{\sqrt{3}}{2}\)
参考答案:B
解析:
由题意知,\( 2{a}_{n+1}={a}_{n}+{a}_{n+2}\),
由等差数列的等差中项,得数列\( \left\{{a}_{n}\right\}\)为等差数列,
又\( {a}_{3}+{a}_{8}+{a}_{13}=2\pi \),所以\( {a}_{8}=\frac{2\pi }{3}\),
则\( {a}_{7}+{a}_{9}=2{a}_{8}=\frac{4\pi }{3}\),
所以\(\cos {\left ( {{a}_{7}+{a}_{9}} \right )}=\cos {\frac {4\pi } {3}}=-\cos {\frac {\pi } {3}}=-\frac {1} {2}\).
故选:B
进入考试题库