高中数学选择性必修 第二册(381题)
A.\(a - d\),\(a\),\(a + d\)
B.2,4,6,8,…,\(2\left( {n - 1} \right)\),\(2n\)
C.\(a - 2d\),\(a - d\),\(a + d\),\(a + 2d\left( {d \ne 0} \right)\)
D.\({a_{n - 1}} = {a_n} - \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\)
知识点:第四章 数列
参考答案:ABD
解析:
解:对于A选项,由于\(\left( {a + d} \right) - a = a - \left( {a - d} \right) = d\),故是等差数列,正确;
对于B选项,2,4,6,8,…,\(2\left( {n - 1} \right)\),\(2n\)中,\(2n - 2\left( {n - 1} \right) = 2\),是等差数列,正确;
对于C选项,因为\(a - d - \left( {a - 2d} \right) = d\),\(\left( {a + d} \right) - \left( {a - d} \right) = 2d\),又\(d \ne 0\),即第3项与第2项的差不等于第2项与第1项的差,故不是等差数列;
对于D选项,由\({a_{n - 1}} = {a_n} - \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\)得\({a_n} - {a_{n - 1}} = \frac{1}{2}\left( {n \in {N^*},n > 1} \right)\),满足等差数列定义.
故选:ABD.