“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\left\{ {{a_n}} \right\}\) 满足 \({a_1} = 2,{a_{n + 1}} - 2{a_n} = {2^{n + 1}}\left( {n \in {{\mathbf{N}}^ * }} \right)\) .


设 \({b_n} = \frac{{n + 2}}{{n \cdot {a_{n + 1}}}}\) ,求数列 \(\left\{ {{b_n}} \right\}\) 的前\(n\) 项和 \({T_n}\) .




知识点:第四章 数列


参考答案:\({b_n} = \frac{{n + 2}}{{n{a_{n + 1}}}} = \frac{{n + 2}}{{n\left( {n + 1} \right) \cdot {2^{n + 1}}}} = \frac{1}{{n \cdot {2^n}}} - \frac{1}{{\left( {n + 1} \right) \cdot {2^{n + 1}}}}\) ,
\({T_n} = \frac{1}{{1 \cdot 2}} - \frac{1}{{2 \cdot {2^2}}} + \frac{1}{{2 \cdot {2^2}}} - \frac{1}{{3 \cdot {2^3}}} + \ldots + \frac{1}{{n \cdot {2^n}}} - \frac{1}{{(n + 1) \cdot {2^{n + 1}}}}\)\( = \frac{1}{2} - \frac{1}{{(n + 1) \cdot {2^{n + 1}}}}\) .

进入考试题库