“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知无穷数列满足 \({a_{n + 1}} = p \cdot {a_n} + \frac{q}{{{a_n}}}\left( {n \in {{\rm{N}}^*}} \right)\) ,其中\(p,q\) 均为非负实数且不同时为0.



若 \({a}_{1}=5\) , \(p \cdot q = 0\) ,求数列 \(\left\{ {{a_n}} \right\}\) 的前 \(n\) 项和 \({S_n}\) .




知识点:第四章 数列


参考答案:∵ \(p \cdot q = 0\) ,且\(p,q\) 均为非负实数且不同时为0.

∴ \(p = 0,q > 0\) 或 \(q = 0,p > 0\) ,

当 \(p = 0,q > 0\) 时, \({a_{n + 1}} = \frac{q}{{{a_n}}}\left( {n \in {{\rm{N}}^*}} \right)\) ,

由 \({a}_{1}=5\) , ∴\({a_2} = \frac{q}{5}\) , \({a_3} = \frac{q}{{{a_2}}} = 5\) ,…, \({a_n} = \left\{ {\begin{array}{*{20}{c}} {5,n = 2k - 1} \\ {\frac{q}{5},n = 2k} \end{array}\left( {k \in {N_ + }} \right)} \right.\) ,

\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{25n + qn - q + 25}}{{10}},n = 2k - 1} \\ {\frac{{25n + qn}}{{10}},n = 2k} \end{array}(k \in {{\rm{N}}_ + })} \right.\) ;

当 \(q = 0,p > 0\) 时, \({a_{n + 1}} = p{a_n}\) ,是以 \({a}_{1}=5\) 为首项,以 \(p\) 为公比的等比数列,

\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{5\left( {{p^n} - 1} \right)}}{{p - 1}},p \ne 1} \\ {5n,p = 1} \end{array}} \right.\) .

进入考试题库