“微信扫一扫”进入题库练习及模拟考试
已知无穷数列满足
若
参考答案:∵ \(p \cdot q = 0\) ,且\(p,q\) 均为非负实数且不同时为0.
∴ \(p = 0,q > 0\) 或 \(q = 0,p > 0\) ,
当 \(p = 0,q > 0\) 时, \({a_{n + 1}} = \frac{q}{{{a_n}}}\left( {n \in {{\rm{N}}^*}} \right)\) ,
由 \({a}_{1}=5\) , ∴\({a_2} = \frac{q}{5}\) , \({a_3} = \frac{q}{{{a_2}}} = 5\) ,…, \({a_n} = \left\{ {\begin{array}{*{20}{c}} {5,n = 2k - 1} \\ {\frac{q}{5},n = 2k} \end{array}\left( {k \in {N_ + }} \right)} \right.\) ,
\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{25n + qn - q + 25}}{{10}},n = 2k - 1} \\ {\frac{{25n + qn}}{{10}},n = 2k} \end{array}(k \in {{\rm{N}}_ + })} \right.\) ;
当 \(q = 0,p > 0\) 时, \({a_{n + 1}} = p{a_n}\) ,是以 \({a}_{1}=5\) 为首项,以 \(p\) 为公比的等比数列,
\({S_n} = \left\{ {\begin{array}{*{20}{l}} {\frac{{5\left( {{p^n} - 1} \right)}}{{p - 1}},p \ne 1} \\ {5n,p = 1} \end{array}} \right.\) .