第41题
设等差数列\( \left\{{a}_{n}\right\}\)的公差为\(d\),若数列\( \left\{{a}_{1}{a}_{n}\right\}\)为递减数列,则( )
A.\( d<0\)
B.\( d>0\)
C.\( {a}_{1}d>0\)
D.\( {a}_{1}d<0\)
参考答案:D
解析:
依题意,数列\( \left\{{a}_{n}\right\}\)是公差为\(d\)的等差数列,数列\( \left\{{a}_{1}{a}_{n}\right\}\)为递减数列,
所以\( {a}_{1}{a}_{n}>{a}_{1}{a}_{n+1}\),\( {a}_{1}{a}_{n}>{a}_{1}\left({a}_{n}+d\right)\),\( {a}_{1}{a}_{n}>{a}_{1}{a}_{n}+{a}_{1}d,{a}_{1}d<0\).
故选:D
第42题
在公差不为零的等差数列\( \left\{{a}_{n}\right\}\)中,若\( 3{a}_{m}={a}_{1}+{a}_{2}+{a}_{3}\),则\( m=\)( )
A.\( 1\)
B.\( 2\)
C.\( 3\)
D.\( 4\)
参考答案:B
解析:
∵\( 2{a}_{2}={a}_{1}+{a}_{3}\),则\( 3{a}_{m}={a}_{1}+{a}_{2}+{a}_{3}=3{a}_{2}\)
∴\( m=2\)
故选:B.
第43题
记数列\( \left\{{a}_{n}\right\}\)是等差数列,下列结论中不恒成立的是( )
A.若\( {a}_{1}+{a}_{2}>0\),则\( {a}_{2}+{a}_{3}>0\)
B.若\( {a}_{1}+{a}_{3}<0\),则\( {a}_{2}<0\)
C.若\( {a}_{1}<{a}_{2}\),则\( {a}_{2}>\sqrt{{a}_{1}{a}_{3}}\)
D.若\( {a}_{1}<0\),则\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)>0\)
参考答案:ACD
解析:
设等差数列\( \left\{{a}_{n}\right\}\)的首项为\( {a}_{1}\),公差为\( d\),则
对于A,由数列\( \left\{{a}_{n}\right\}\)是等差数列及\( {a}_{1}+{a}_{2}>0\),所以可取\( {a}_{1}=1,{a}_{2}=0,{a}_{3}=-1\),所以\( {a}_{2}+{a}_{3}>0\)不成立,故A正确;
对于B,由数列\( \left\{{a}_{n}\right\}\)是等差数列,所以\( 2{a}_{2}={a}_{1}+{a}_{3}<0\),所以\( {a}_{2}<0\)恒成立,故B不正确;
对于C, 由数列\( \left\{{a}_{n}\right\}\)是等差数列,\( {a}_{1}<{a}_{2}\)可取\( {a}_{1}=-3,{a}_{2}=-2,{a}_{3}=-1\),所以\( {a}_{2}>\sqrt{{a}_{1}{a}_{3}}\)不成立,故C正确;
对于D,由数列\( \left\{{a}_{n}\right\}\)是等差数列,得\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)=-{d}^{2}\le 0\),无论\( {a}_{1}\)为何值,均有\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)\le 0\)所以若\( {a}_{1}<0\),则\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)>0\)恒不成立,故D正确.
故选:ACD
第44题
已知等差数列\( \left\{{a}_{n}\right\}\)的公差是\(d\),且\( {a}_{8}+{a}_{9}+{a}_{10}=36\),则\( {a}_{1}d\)的最大值为___.
参考答案:\( \frac{9}{2}\)
解析:
因为\( {a}_{8}+{a}_{9}+{a}_{10}=36\),
所以\( 3{a}_{1}+24d=36\),
\( {a}_{1}+8d=12\),
所以\( {a}_{1}d=(12-8d)d=-8{d}^{2}+12d=-8{\left(d-\frac{3}{4}\right)}^{2}+\frac{9}{2}\),
所以当\( d=\frac{3}{4}\)时,\( {a}_{1}d\)取最大值,最大值为\( \frac{9}{2}\).
故答案为:\( \frac{9}{2}\)
第45题
若数列\( \left\{2{a}_{n}+1\right\}\)是等差数列,其公差\( d=1\),且\({a_3} = 5\),则\( {a}_{10}=\)___.
参考答案:\( \frac{17}{2}\)
解析:
∵数列\( \left\{2{a}_{n}+1\right\}\)是等差数列,则\( \left(2{a}_{10}+1\right)=\left(2{a}_{3}+1\right)+7d=18\)
∴\( {a}_{10}=\frac{17}{2}\)
故答案为:\( \frac{17}{2}\).
第46题
求证:\( \left\{\frac{1}{{a}_{n}}\right\}\)是等差数列,并求\( \left\{{a}_{n}\right\}\)的通项公式;
参考答案:由\( {a}_{n+1}=\frac{{a}_{n}}{1-2{a}_{n}}\),
得\( \frac{1}{{a}_{n+1}}=\frac{1-2{a}_{n}}{{a}_{n}}=\frac{1}{{a}_{n}}-2\),
∴\( \frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=-2\)又\( \frac{1}{{a}_{1}}=1\),
∴数列\( \left\{\frac{1}{{a}_{n}}\right\}\)是以1为首项,
\( -2\)为公差的等差数列∴
\( \frac{1}{{a}_{n}}=1-2\left(n-1\right)=-2n+3\)
∴\( {a}_{n}=\frac{1}{3-2n}\)
第47题
是否存在正整数\(m\),使得\( {a}_{2m}=2{a}_{m}+1\),若存在,求出\(m\)的值;若不存在,说明理由.
参考答案:∵\( {a}_{2m}=2{a}_{m}+1\),
∴\( \frac{1}{3-4m}=\frac{2}{3-2m}+1\)
则\( 2{m}^{2}-6m+3=0\),
解得\( m=\frac{3\pm \sqrt{3}}{2}\),
不符合题意∴
不存在正整数\( m\),
使得\( {a}_{2m}=2{a}_{m}+1\).
第48题
若数列\( \left\{{a}_{n}\right\}\)满足:\( {a}_{1}=\frac{1}{2}\),\( {a}_{n+1}=\frac{{a}_{n}}{2{a}_{n}+1}\)则第三项\( {a}_{3}=\)___,它的通项公式\({a}_{n}=\)___.
参考答案:\( \frac{1}{6}\);\(\frac {1} {2n}\)
解析:
由\( {a}_{n+1}=\frac{{a}_{n}}{2{a}_{n}+1}\)可得\( \frac{1}{{a}_{n+1}}=\frac{2{a}_{n}+1}{{a}_{n}}=\frac{1}{{a}_{n}}+2\),
所以\( \left\{\frac{1}{{a}_{n}}\right\}\)为首项是\( \frac{1}{{a}_{1}}=2\)公差为\( 2\)的等差数列,
所以\( \frac{1}{{a}_{n}}=2+(n-1)\times 2=2n\),
所以\( {a}_{n}=\frac{1}{2n}\),
所以\( {a}_{3}=\frac{1}{6}\).
故答案为:\( \frac{1}{6},\frac{1}{2n}\)
第49题
设等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),且\({S_{2021}} > 0\),\({S_{2022}} < 0\),则当\({S_n}\)最大时,\(n = \)( )
A.1010
B.1011
C.1012
D.1013
参考答案:B
解析:
由\({S_{2021}} > 0\)可得\({S_{2021}} = \frac{{2021({a_1} + {a_{2021}})}}{2} = 2021{a_{1011}} > 0\),即\({a_{1011}} > 0\),
由\({S_{2022}} < 0\)可得\({S_{2022}} = \frac{{2022({a_1} + {a_{2022}})}}{2} = 1011({a_{1011}} + {a_{1012}}) < 0\),即\({a_{1011}} + {a_{1012}} < 0\),
故\({a_{1011}} > 0,{a_{1012}} < 0\),则数列\(\left\{ {{a_n}} \right\}\)的前1011项为正数,从第1012项为负数的递减数列,
故当\({S_n}\)最大时,\(n=1011\),
故选:B
第50题
在等差数列\(\left\{ {{a_n}} \right\}\)中,其前n项和为\({S_n}\),若\({a_3} + {a_4} + {a_5} + {a_6} = 45\),则\({S_8} = \)( )
A.45
B.90
C.135
D.180
参考答案:B
解析:
∵\(\left\{ {{a_n}} \right\}\)是等差数列,由等差数列性质得\({a_3} + {a_4} + {a_5} + {a_6} = 2\left( {{a_1} + {a_8}} \right) = 45\),得\({a_1} + {a_8} = \frac{{45}}{2}\),∴\({S_8} = \)\(\frac{{\left( {{a_1} + {a_8}} \right) \times 8}}{2} = \frac{{45}}{2} \times 4 = 90\).
故选:B.
第51题
已知等差数列\(\left\{ {{a_n}} \right\}\)满足\({a_1} + {a_3} + {a_5} = 12\),\({a_{10}} + {a_{11}} + {a_{12}} = 24\),则\(\left\{ {{a_n}} \right\}\)的前\(13\)项的和为( )
A.\(12\)
B.\(36\)
C.\(78\)
D.\(156\)
参考答案:C
解析:
设等差数列\(\left\{ {{a_n}} \right\}\)公差为\(d\),
\(\because {a_1} + {a_3} + {a_5} = 12\),\({a_{10}} + {a_{11}} + {a_{12}} = 24\),\(\therefore {a_{10}} + {a_{11}} + {a_{12}} - \left( {{a_1} + {a_3} + {a_5}} \right) = 24d = 12\),
解得:\(d = \frac{1}{2}\),\(\therefore {a_1} + {a_3} + {a_5} = 3{a_1} + 6d = 3{a_1} + 3 = 12\),解得:\({a_1} = 3\),
\(\therefore \left\{ {{a_n}} \right\}\)的前\(13\)项的和为\(13{a_1} + \frac{{13 \times 12}}{2}d = 39 + \frac{{13 \times 12}}{4} = 78\).
故选:C.
第52题
已知等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),满足\({S_{19}} > 0\),\({S_{20}} < 0\),若数列\(\left\{ {{a_n}} \right\}\)满足\({a_m} \cdot {a_{m + 1}} < 0\),则\(m=\)( )
A.9
B.10
C.19
D.20
参考答案:B
解析:
等差数列\(\left\{ {{a_n}} \right\}\)的前n项和为\({S_n}\),则\({S_{19}} = \frac{{{a_1} + {a_{19}}}}{2} \times 19 = 19{a_{10}} > 0\),有\({a_{10}} > 0\),
\({S_{20}} = \frac{{{a_1} + {a_{20}}}}{2} \times 20 = 10({a_{10}} + {a_{11}}) < 0\),有\({a_{11}} < - {a_{10}} < 0\),显然数列\(\left\{ {{a_n}} \right\}\)是递减的,且\({a_{10}} \cdot {a_{11}} < 0\),
因\({a_m} \cdot {a_{m + 1}} < 0\),所以\(m = 10\).
故选:B
第53题
已知项数为\(n\)的等差数列\(\left\{ {{a_n}} \right\}\)的前\(6\)项和为\(10\),最后\(6\)项和为\(110\),所有项和为\(360\),则\(n = \)( )
A.\(48\)
B.\(36\)
C.\(30\)
D.\(26\)
参考答案:B
解析:
由题意知\({a_1} + {a_2} + \cdot \cdot \cdot + {a_6} = 10\),\({a_n} + {a_{n - 1}} + \cdot \cdot \cdot + {a_{n - 5}} = 110\),
两式相加得\(6\left( {{a_1} + {a_n}} \right) = 120\),所以\({a_1} + {a_n} = 20\),又\(\frac{{n\left( {{a_1} + {a_n}} \right)}}{2} = 360\),所以\(n = 36\).
故选:B.
第54题
已知等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),公差为\(d\),若\({S_{10}} < {S_9} < {S_{11}}\),则( )
A.\(d > 0\)
B.\({a_1} > 0\)
C.\({S_{20}} < 0\)
D.\({S_{21}} > 0\)
参考答案:AD
解析:
因为\({S_{10}} < {S_9}\),
\({S_{10}} < {S_{11}}\),
所以\({S_{10}} - {S_9} = {a_{10}} < 0\),
\({S_{11}} - {S_{10}} = {a_{11}} > 0\),
故等差数列首项为负,公差为正,所以\(d > 0\),\({a_1} < 0\),
故A正确,B错误;由\({S_9} < {S_{11}}\),
可知\({S_{11}} - {S_9} = {a_{10}} + {a_{11}} > 0\),
所以\({S_{20}} = 10\left( {{a_1} + {a_{20}}} \right) = 10\left( {{a_{10}} + {a_{11}}} \right) > 0\),
故C错误;
因为\({a_{11}} > 0\),所以\({S_{21}} = 21{a_{11}} > 0\),故D正确.
故选:AD
第55题
已知等差数列\(\left\{ {{a_n}} \right\}\)的前n项和为\({S_n}\),若\({S_{12}} = 3{a_{11}}\),则\({a_5} = \)___,\({S}_{9}=\)___.
参考答案:0;0
解析:
等差数列\(\left\{ {{a_n}} \right\}\)中,\({S_{12}} = 12{a_1} + 66d = 3{a_{11}} = 3{a_1} + 30d\),
所以\(12{a_1} + 66d = 3{a_1} + 30d\),
即\({a_1} = - 4d\),
所以\({a_5} = {a_1} + 4d = 0\),\({S_9} = 9{a_5} = 0\)
故答案为:①0;②0.
第56题
等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),已知\({S_{10}} = 0\),\({S_{15}} = 25\),则\(n + {S_n}\)的最小值为___.
参考答案:\( - 4\)
解析:
由\({S_n} = n{a_1} + \frac{{n\left( {n - 1} \right)d}}{2}\),\({S_{10}} = 0\),\({S_{15}} = 25\)得\(\left\{ {\begin{array}{*{20}{l}}
{10{a_1} + 45d = 0} \\\
{15{a_1} + 105d = 25}
\end{array}} \right.\),
解得:\(\left\{ {\begin{array}{*{20}{l}}
{{a_1} = - 3} \\\
{d = \frac{2}{3}}
\end{array}} \right.\),
则\({S_n} = - 3n + \frac{{n\left( {n - 1} \right)}}{2} \cdot \frac{2}{3}{\rm{ = }}\frac{1}{3}\left( {{n^2} - 10n} \right)\).故\(n + {S_n} = \frac{1}{3}\left( {{n^2} - 7n} \right) = \frac{1}{3}\left[ {{{\left( {n - \frac{7}{2}} \right)}^2} - \frac{{49}}{4}} \right]\).
由于\(n \in {{\rm{N}}^ * }\),故当\(n = 3\)或4时,\({\left( {n + {S_n}} \right)_{\min }} = - 4\).
故答案为:\( - 4\)
第57题
参考答案:\({a_{11}} = {a_1} + \left( {11 - 1} \right) \times 2 = 0\),故\({a_1} = - 20\),故\({a_n} = - 20 + \left( {n - 1} \right) \times 2 = 2n - 22\)即\({a_n} = 2n - 22\).
第58题
当\(n\)为多少时,\({S_n}\)有最小值?最小值是多少?
参考答案:当\(1 \leqslant n \leqslant 10\)时,\({a_n} < 0\),当\(n = 11\)时,\({a_n} = 0\),当\(n \geqslant 12\)时,\({a_n} > 0\),故当\(n = 10,11\)时,\({S_n}\)有最小值且最小值为\({S_{10}} = {S_{11}} = - 20 \times 11 + \frac{{11 \times 10}}{2} \times 2 = - 110\).
第59题
已知\(\left\{ {{a_n}} \right\}\)是等差数列,其前\(n\)项和为\({S_n}\),若\({a_3} + 12{a_7} = {S_{12}}\),则下列判断正确的是( )
A.\({a_9} = 0\)
B.\({S_{17}} = 0\)
C.\({S_6} = {S_{11}}\)
D.\({a_8} \cdot {a_{10}} < 0\)
参考答案:ABC
解析:
因为\(\left\{ {{a_n}} \right\}\)是等差数列,\({a_3} + 12{a_7} = {S_{12}}\),所以\({a_1} + 2d + 12\left( {{a_1} + 6d} \right) = 12{a_1} + 66d\),
即\({a_1} + 8d = 0\),亦即\({a_9} = 0\),
所以\({S_{17}} = \frac{{\left( {{a_1} + {a_{17}}} \right) \times 17}}{2} = 0,{S_{11}} - {S_6} = {a_7} + {a_8} + {a_9} + {a_{10}} + {a_{11}} = 5{a_9} = 0\),\({a_8} \cdot {a_{10}} = \left( {{a_9} - d} \right) \cdot \left( {{a_9} + d} \right) = a_9^2 - {d^2} = - {d^2} \leqslant 0\).
故选:ABC.
第60题
等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),\({a_5} = 7,{a_{n - 4}} = 29,{S_n} = 198\),则\(n = \)( )
A.10
B.11
C.12
D.13
参考答案:B
解析:
因为\({S_n} = \frac{{n\left( {{a_1} + {a_n}} \right)}}{2} = \frac{{n\left( {{a_5} + {a_{n - 4}}} \right)}}{2}\),
又\({a_5} = 7,{a_{n - 4}} = 29,{S_n} = 198\),
所以\(18n = 198\),
所以\(n = 11\),
故选:B.