“微信扫一扫”进入题库练习及模拟考试
已知数列\({\rm{\{ }}{a_n}{\rm{\} }}\)为等差数列,公差\(d = 2\),\({a_{11}} = 0\),\({S_n}\)是数列\({\rm{\{ }}{a_n}{\rm{\} }}\)的前\(n\)项和.
求通项\({a_n}\);
参考答案:\({a_{11}} = {a_1} + \left( {11 - 1} \right) \times 2 = 0\),故\({a_1} = - 20\),故\({a_n} = - 20 + \left( {n - 1} \right) \times 2 = 2n - 22\)即\({a_n} = 2n - 22\).
进入考试题库