“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


设等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),且\({S_{2021}} > 0\)\({S_{2022}} < 0\),则当\({S_n}\)最大时,\(n = \)       


A.1010

B.1011

C.1012

D.1013


知识点:第四章 数列


参考答案:B


解析:


\({S_{2021}} > 0\)可得\({S_{2021}} = \frac{{2021({a_1} + {a_{2021}})}}{2} = 2021{a_{1011}} > 0\),即\({a_{1011}} > 0\)



\({S_{2022}} < 0\)可得\({S_{2022}} = \frac{{2022({a_1} + {a_{2022}})}}{2} = 1011({a_{1011}} + {a_{1012}}) < 0\),即\({a_{1011}} + {a_{1012}} < 0\)



\({a_{1011}} > 0,{a_{1012}} < 0\),则数列\(\left\{ {{a_n}} \right\}\)的前1011项为正数,从第1012项为负数的递减数列,



故当\({S_n}\)最大时,\(n=1011\)



故选:B


进入考试题库