高中数学选择性必修 第二册(381题)
记数列\( \left\{{a}_{n}\right\}\)是等差数列,下列结论中不恒成立的是( )
A.若\( {a}_{1}+{a}_{2}>0\),则\( {a}_{2}+{a}_{3}>0\)
B.若\( {a}_{1}+{a}_{3}<0\),则\( {a}_{2}<0\)
C.若\( {a}_{1}<{a}_{2}\),则\( {a}_{2}>\sqrt{{a}_{1}{a}_{3}}\)
D.若\( {a}_{1}<0\),则\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)>0\)
知识点:第四章 数列
参考答案:ACD
解析:
设等差数列\( \left\{{a}_{n}\right\}\)的首项为\( {a}_{1}\),公差为\( d\),则
对于A,由数列\( \left\{{a}_{n}\right\}\)是等差数列及\( {a}_{1}+{a}_{2}>0\),所以可取\( {a}_{1}=1,{a}_{2}=0,{a}_{3}=-1\),所以\( {a}_{2}+{a}_{3}>0\)不成立,故A正确;
对于B,由数列\( \left\{{a}_{n}\right\}\)是等差数列,所以\( 2{a}_{2}={a}_{1}+{a}_{3}<0\),所以\( {a}_{2}<0\)恒成立,故B不正确;
对于C, 由数列\( \left\{{a}_{n}\right\}\)是等差数列,\( {a}_{1}<{a}_{2}\)可取\( {a}_{1}=-3,{a}_{2}=-2,{a}_{3}=-1\),所以\( {a}_{2}>\sqrt{{a}_{1}{a}_{3}}\)不成立,故C正确;
对于D,由数列\( \left\{{a}_{n}\right\}\)是等差数列,得\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)=-{d}^{2}\le 0\),无论\( {a}_{1}\)为何值,均有\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)\le 0\)所以若\( {a}_{1}<0\),则\( \left({a}_{2}-{a}_{1}\right)\left({a}_{2}-{a}_{3}\right)>0\)恒不成立,故D正确.
故选:ACD