“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知等差数列\(\left\{ {{a_n}} \right\}\)满足\({a_1} + {a_3} + {a_5} = 12\)\({a_{10}} + {a_{11}} + {a_{12}} = 24\),则\(\left\{ {{a_n}} \right\}\)的前\(13\)项的和为(       


A.\(12\)

B.\(36\)

C.\(78\)

D.\(156\)


知识点:第四章 数列


参考答案:C


解析:

设等差数列\(\left\{ {{a_n}} \right\}\)公差为\(d\)

\(\because {a_1} + {a_3} + {a_5} = 12\)\({a_{10}} + {a_{11}} + {a_{12}} = 24\)\(\therefore {a_{10}} + {a_{11}} + {a_{12}} - \left( {{a_1} + {a_3} + {a_5}} \right) = 24d = 12\)

解得:\(d = \frac{1}{2}\)\(\therefore {a_1} + {a_3} + {a_5} = 3{a_1} + 6d = 3{a_1} + 3 = 12\),解得:\({a_1} = 3\)

\(\therefore \left\{ {{a_n}} \right\}\)的前\(13\)项的和为\(13{a_1} + \frac{{13 \times 12}}{2}d = 39 + \frac{{13 \times 12}}{4} = 78\).

故选:C.

进入考试题库