参考答案:\( \frac{1}{6}\);\(\frac {1} {2n}\)
由\( {a}_{n+1}=\frac{{a}_{n}}{2{a}_{n}+1}\)可得\( \frac{1}{{a}_{n+1}}=\frac{2{a}_{n}+1}{{a}_{n}}=\frac{1}{{a}_{n}}+2\),
所以\( \left\{\frac{1}{{a}_{n}}\right\}\)为首项是\( \frac{1}{{a}_{1}}=2\)公差为\( 2\)的等差数列,
所以\( \frac{1}{{a}_{n}}=2+(n-1)\times 2=2n\),
所以\( {a}_{n}=\frac{1}{2n}\),
所以\( {a}_{3}=\frac{1}{6}\).
故答案为:\( \frac{1}{6},\frac{1}{2n}\)