“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)项和为\({S_n}\),已知\({S_{10}} = 0\)\({S_{15}} = 25\),则\(n + {S_n}\)的最小值为___.



知识点:第四章 数列


参考答案:\( - 4\)


解析:

\({S_n} = n{a_1} + \frac{{n\left( {n - 1} \right)d}}{2}\)\({S_{10}} = 0\)\({S_{15}} = 25\)\(\left\{ {\begin{array}{*{20}{l}}
{10{a_1} + 45d = 0} \\\
{15{a_1} + 105d = 25}
\end{array}} \right.\)

解得:\(\left\{ {\begin{array}{*{20}{l}}
{{a_1} = - 3} \\\
{d = \frac{2}{3}}
\end{array}} \right.\)

\({S_n} = - 3n + \frac{{n\left( {n - 1} \right)}}{2} \cdot \frac{2}{3}{\rm{ = }}\frac{1}{3}\left( {{n^2} - 10n} \right)\).故\(n + {S_n} = \frac{1}{3}\left( {{n^2} - 7n} \right) = \frac{1}{3}\left[ {{{\left( {n - \frac{7}{2}} \right)}^2} - \frac{{49}}{4}} \right]\)

由于\(n \in {{\rm{N}}^ * }\),故当\(n = 3\)或4时,\({\left( {n + {S_n}} \right)_{\min }} = - 4\).

故答案为:\( - 4\)

进入考试题库