“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\left\{ {{a_n}} \right\}\) 的前 \(n\) 项和为 \({S_n}\)\({a_1} = 1\)\({a_n} > 0\)\(S_n^2 = a_{n + 1}^2 - \lambda {S_{n + 1}}\) ,其中 \(\lambda \) 为常数.

是否存在实数 \(\lambda \) ,使得数列 \(\left\{ {{a_n}} \right\}\) 为等比数列?若存在,求出 \(\lambda \) 的值;若不存在,说明理由.



知识点:第四章 数列


参考答案:∵ \({S_{n + 1}} = 2{S_n} + \lambda \) ,
\({S_n} = 2{S_{n - 1}} + \lambda \left( {n \geqslant 2} \right)\) ,
相减得 \({a_{n + 1}} = 2{a_n}\left( {n \geqslant 2} \right)\) ,
∴ \(\left\{ {{a_n}} \right\}\) 从第二项起成等比数列.
∵ \({S_2} = 2{S_1} + \lambda \) ,
即 \({a_2} + {a_1} = 2{a_1} + \lambda \) ,
∴ \({a_2} = 1 + \lambda > 0\) ,
∴ \(\lambda > - 1\) ,
∴ \({a_n} = \left\{ {\begin{array}{*{20}{l}}
{1,n = 1,} \\
{\left( {\lambda + 1} \right){2^{n - 2}},n \geqslant 2.}
\end{array}} \right.\) 若使 \(\left\{ {{a_n}} \right\}\) 是等比数列,
则 \({a_1}{a_3} = a_2^2\) ,
∴ \(2\left( {\lambda + 1} \right) = {\left( {\lambda + 1} \right)^2}\) ,
∴ \(\lambda = - 1\) (舍)或 \(\lambda = 1\) .

进入考试题库