“微信扫一扫”进入题库练习及模拟考试
已知数列
是否存在实数
参考答案:∵ \({S_{n + 1}} = 2{S_n} + \lambda \) ,
\({S_n} = 2{S_{n - 1}} + \lambda \left( {n \geqslant 2} \right)\) ,
相减得 \({a_{n + 1}} = 2{a_n}\left( {n \geqslant 2} \right)\) ,
∴ \(\left\{ {{a_n}} \right\}\) 从第二项起成等比数列.
∵ \({S_2} = 2{S_1} + \lambda \) ,
即 \({a_2} + {a_1} = 2{a_1} + \lambda \) ,
∴ \({a_2} = 1 + \lambda > 0\) ,
∴ \(\lambda > - 1\) ,
∴ \({a_n} = \left\{ {\begin{array}{*{20}{l}}
{1,n = 1,} \\
{\left( {\lambda + 1} \right){2^{n - 2}},n \geqslant 2.}
\end{array}} \right.\) 若使 \(\left\{ {{a_n}} \right\}\) 是等比数列,
则 \({a_1}{a_3} = a_2^2\) ,
∴ \(2\left( {\lambda + 1} \right) = {\left( {\lambda + 1} \right)^2}\) ,
∴ \(\lambda = - 1\) (舍)或 \(\lambda = 1\) .