“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知等差数列\(\left\{ {{a_n}} \right\}\)的首项为\(a\),公差为\(d\);等差数列\(\left\{ {{b_n}} \right\}\)的首项为\(b\),公差为\(e\).如果\({{c}_{n}}={{a}_{n}}+{{b}_{n}}\left ( {n\geq 1} \right )\),且\({c_1} = 4\)\({c_2} = 8\),则\({c_{10}} = \)___.



知识点:第四章 数列


参考答案:40


解析:


因为\({c_n} - {c_{n - 1}} = {a_n} + {b_n} - \left( {{a_{n - 1}} + {b_{n - 1}}} \right) = {a_n} - {a_{n - 1}} + {b_n} - {b_{n - 1}} = d + e\)



所以数列\(\{ {c_n}\} \)是以\(a + b\)为首项,\(d+e\)为公差的等差数列,



因为\({c_1} = 4\)\({c_2} = 8\),所以\(d + e = {c_2} - {c_1} = 8 - 4 = 4\)



所以\({c_{10}} = 4 + 4 \times 9 = 40\).



故答案为:40


进入考试题库