因为\({c_n} - {c_{n - 1}} = {a_n} + {b_n} - \left( {{a_{n - 1}} + {b_{n - 1}}} \right) = {a_n} - {a_{n - 1}} + {b_n} - {b_{n - 1}} = d + e\),
所以数列\(\{ {c_n}\} \)是以\(a + b\)为首项,\(d+e\)为公差的等差数列,
因为\({c_1} = 4\),\({c_2} = 8\),所以\(d + e = {c_2} - {c_1} = 8 - 4 = 4\)
所以\({c_{10}} = 4 + 4 \times 9 = 40\).
故答案为:40