\({a_n}{a_{n + 1}} = 2{S_n}\),则\(n \geqslant 2\)时,\({a_{n - 1}}{a_n} = 2{S_{n - 1}}\),两式相减得\(({a_{n + 1}} - {a_{n - 1}}){a_n} = 2{a_n}\),
因为\({a_n} > 0\),所以\({a_{n + 1}} - {a_{n - 1}} = 2\),
所以数列\(\{ {a_n}\} \)的奇数项与偶数项分别成等差数列,公差为2,
又\({a_1}{a_2} = 2{S_1} = 2{a_1}\),而\({a_1} > 0\),所以\({a_2} = 2\),则\({a_{66}} = 66\),
所以\({a_2} + {a_4} + \cdots + {a_{66}} = \frac{{33(2 + 66)}}{2} = 1122\).
故答案为:1122.