“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知各项均为正数的数列\(\left \{ {{a}_{n}} \right \} \)的前\(n\)项和为\({S}_{n}\),且满足\({a}_{n}{a}_{n+1}=2{S}_{n}\left ( {n\in \text{N}^{*}} \right )\),则\({a}_{2}+{a}_{4}+{a}_{6}+…+{a}_{66}=\)___



知识点:第四章 数列


参考答案:1122


解析:

\({a_n}{a_{n + 1}} = 2{S_n}\),则\(n \geqslant 2\)时,\({a_{n - 1}}{a_n} = 2{S_{n - 1}}\),两式相减得\(({a_{n + 1}} - {a_{n - 1}}){a_n} = 2{a_n}\)

因为\({a_n} > 0\),所以\({a_{n + 1}} - {a_{n - 1}} = 2\)

所以数列\(\{ {a_n}\} \)的奇数项与偶数项分别成等差数列,公差为2,

\({a_1}{a_2} = 2{S_1} = 2{a_1}\),而\({a_1} > 0\),所以\({a_2} = 2\),则\({a_{66}} = 66\)

所以\({a_2} + {a_4} + \cdots + {a_{66}} = \frac{{33(2 + 66)}}{2} = 1122\)

故答案为:1122.

进入考试题库