“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列\(\left\{ {{a_n}} \right\}\)满足\({a_1} + 2{a_2} + 3{a_3} + \cdots + n{a_n} = 5n\),数列\(\left\{ {{b_n}} \right\}\)满足对任意正整数\(m\)均有\({b_m} + {b_{m + 1}} + {b_{m + 2}} = \frac{1}{{{a_m}}}\)成立.

\(\left\{ {{b_n}} \right\}\)的前\(30\)项和.



知识点:第四章 数列


参考答案:解:设数列\(\left\{ {{b_n}} \right\}\)的前\(n\)项和为\({T_n}\),
\(\because {b_m} + {b_{m + 1}} + {b_{m + 2}} = \frac{1}{{{a_m}}} = \frac{m}{5}\),
\(\therefore {T_{30}} = \left( {{b_1} + {b_2} + {b_3}} \right) + \left( {{b_4} + {b_5} + {b_6}} \right) + \cdots + \left( {{b_{28}} + {b_{29}} + {b_{30}}} \right)
= \frac{1}{5} + \frac{4}{5} + \cdots + \frac{{28}}{5}
= \frac{{10 \times \left( {\frac{1}{5} + \frac{{28}}{5}} \right)}}{2}\)\( = 29\).

进入考试题库