“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


设等差数列\(\left\{ {{a_n}} \right\}\)的前\(n\)和为\({S_n},\)\({S_{m - 1}} = - 4,{S_m} = 0,{S_{m + 1}} = 5,\)\(m = \)___



知识点:第四章 数列


参考答案:9


解析:

由题意得:\({a_m} = {S_m} - {S_{m - 1}} = 4\)\({a_{m + 1}} = {S_{m + 1}} - {S_m} = 5\)

则等差数列的公差\(d = {a_{m + 1}} - {a_m} = 1\)

\({a_m} = {a_1} + \left( {m - 1} \right)d = {a_1} + \left( {m - 1} \right) = 4\)\({S_m} = {a_1}m + \frac{{m\left( {m - 1} \right)}}{2} = 0\)

解得:\(m = 9\)\(m = 0\)(舍去),\({a_1} = - 4\)

故答案为:9

进入考试题库