“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)



已知 \(0 \leqslant {a_1} \leqslant 1\) ,定义 \({a_{n + 1}} = \left\{ {\begin{array}{*{20}{l}} {2{a_n},0 \leqslant {a_n} < \frac{1}{2}} \\ {2{a_n} - 1,{a_n} \geqslant \frac{1}{2}} \end{array}} \right.\).如果 \({a_2} = {a_3}\) ,则 \({a_2} = \)___;如果 \({a_1} < {a_3}\) ,则 \({a_1}\) 的取值范围是___.



知识点:第四章 数列


参考答案:\(0\) 或 \(1\);\(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\)


解析:


(1) \(\because 0 \leqslant {a_1} \leqslant 1\) ,定义 \({a_{n + 1}} = \left\{ {\begin{array}{*{20}{l}} {2{a_n},0 \leqslant {a_n} < \frac{1}{2}} \\\ {2{a_n} - 1,{a_n} \geqslant \frac{1}{2}} \end{array}} \right.\).

若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,则 \({a_3} = 2{a_2} = {a_2}\) ,解得 \({a_2} = 0\);


若 \({a_2} \geqslant \frac{1}{2}\) ,则 \({a_3} = 2{a_2} - 1 = {a_2}\) ,解得 \({a_2} = 1\) .


综上所述, \({a_2} = 0\) 或 \(1\) ;


(2)①当 \(0 \leqslant {a_1} < \frac{1}{2}\) 时, \({a_2} = 2{a_1}\) .


(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} < \frac{1}{2} \Rightarrow 0 \leqslant {a_1} < \frac{1}{4}\) , \({a_3} = 2{a_2} = 4{a_1}\) ,


\(\because {a_1} < {a_3} = 4{a_1}\) , \(\therefore {a_1} > 0\) ,此时, \(0 < {a_1} < \frac{1}{4}\) ;


(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} \geqslant \frac{1}{2}\) ,得 \(\frac{1}{4} \leqslant {a_1} < \frac{1}{2}\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 1\) ,


\(\because {a_1} < {a_3} = 4{a_1} - 1\) , \(\therefore {a_1} > \frac{1}{3}\) ,此时, \(\frac{1}{3} < {a_1} < \frac{1}{2}\) ;


②当 \(\frac{1}{2} \leqslant {a_1} \leqslant 1\) 时, \({a_2} = 2{a_1} - 1\) .


(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} - 1 < \frac{1}{2} \Rightarrow \frac{1}{2} \leqslant {a_1} < \frac{3}{4}\) , \({a_3} = 2{a_2} = 4{a_1} - 2\) ,


 \(\because {a_1} < {a_3} = 4{a_2} - 2\) , \(\therefore {a_1} > \frac{2}{3}\) ,此时, \(\frac{2}{3} < {a_1} < \frac{3}{4}\) ;


(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} - 1 \geqslant \frac{1}{2} \Rightarrow \frac{3}{4} \leqslant {a_1} \leqslant 1\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 3\) ,


\(\because {a_1} < {a_3} = 4{a_1} - 3\) , \(\therefore {a_1} > 1\) ,此时, \({a_1}\) 不存在.


综上所述, \({a_1}\) 的取值范围是 \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .


故答案为: \(0\) 或 \(1\) ; \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .


进入考试题库