“微信扫一扫”进入题库练习及模拟考试
已知 \(0 \leqslant {a_1} \leqslant 1\) ,定义 \({a_{n + 1}} = \left\{ {\begin{array}{*{20}{l}} {2{a_n},0 \leqslant {a_n} < \frac{1}{2}} \\ {2{a_n} - 1,{a_n} \geqslant \frac{1}{2}} \end{array}} \right.\).如果 \({a_2} = {a_3}\) ,则 \({a_2} = \)___;如果 \({a_1} < {a_3}\) ,则 \({a_1}\) 的取值范围是___.
参考答案:\(0\) 或 \(1\);\(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\)
解析:
(1) \(\because 0 \leqslant {a_1} \leqslant 1\) ,定义 \({a_{n + 1}} = \left\{ {\begin{array}{*{20}{l}} {2{a_n},0 \leqslant {a_n} < \frac{1}{2}} \\\ {2{a_n} - 1,{a_n} \geqslant \frac{1}{2}} \end{array}} \right.\).
若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,则 \({a_3} = 2{a_2} = {a_2}\) ,解得 \({a_2} = 0\);
若 \({a_2} \geqslant \frac{1}{2}\) ,则 \({a_3} = 2{a_2} - 1 = {a_2}\) ,解得 \({a_2} = 1\) .
综上所述, \({a_2} = 0\) 或 \(1\) ;
(2)①当 \(0 \leqslant {a_1} < \frac{1}{2}\) 时, \({a_2} = 2{a_1}\) .
(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} < \frac{1}{2} \Rightarrow 0 \leqslant {a_1} < \frac{1}{4}\) , \({a_3} = 2{a_2} = 4{a_1}\) ,
\(\because {a_1} < {a_3} = 4{a_1}\) , \(\therefore {a_1} > 0\) ,此时, \(0 < {a_1} < \frac{1}{4}\) ;
(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} \geqslant \frac{1}{2}\) ,得 \(\frac{1}{4} \leqslant {a_1} < \frac{1}{2}\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 1\) ,
\(\because {a_1} < {a_3} = 4{a_1} - 1\) , \(\therefore {a_1} > \frac{1}{3}\) ,此时, \(\frac{1}{3} < {a_1} < \frac{1}{2}\) ;
②当 \(\frac{1}{2} \leqslant {a_1} \leqslant 1\) 时, \({a_2} = 2{a_1} - 1\) .
(i)若 \(0 \leqslant {a_2} < \frac{1}{2}\) ,即 \(0 \leqslant 2{a_1} - 1 < \frac{1}{2} \Rightarrow \frac{1}{2} \leqslant {a_1} < \frac{3}{4}\) , \({a_3} = 2{a_2} = 4{a_1} - 2\) ,
\(\because {a_1} < {a_3} = 4{a_2} - 2\) , \(\therefore {a_1} > \frac{2}{3}\) ,此时, \(\frac{2}{3} < {a_1} < \frac{3}{4}\) ;
(ii)若 \({a_2} \geqslant \frac{1}{2}\) ,即 \(2{a_1} - 1 \geqslant \frac{1}{2} \Rightarrow \frac{3}{4} \leqslant {a_1} \leqslant 1\) , \({a_3} = 2{a_2} - 1 = 4{a_1} - 3\) ,
\(\because {a_1} < {a_3} = 4{a_1} - 3\) , \(\therefore {a_1} > 1\) ,此时, \({a_1}\) 不存在.
综上所述, \({a_1}\) 的取值范围是 \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .
故答案为: \(0\) 或 \(1\) ; \(\left( {0,\frac{1}{4}} \right) \cup \left( {\frac{1}{3},\frac{1}{2}} \right) \cup \left( {\frac{2}{3},\frac{3}{4}} \right)\) .