当 \(n = 1\) 时, \({S_1} + {S_2} = 2\) , ∴ \({a_2} = 2 - 2{a_1}\),
当 \({\rm{ }}n \geqslant 2\) 时 \({S_n} + {S_{n + 1}} = {n^2} + n\) ,
\({S_{n - 1}} + {S_n} = {(n - 1)^2} + (n - 1)\) ,
两式相减得 \({a_n} + {a_{n + 1}} = 2n\) ①. \({a_2} + {a_3} = 4\) , \({a_3} = 2 + 2{a_1}\) ,
当 \(n \geqslant 3{\rm{ }}\) 时, \({a_{n - 1}} + {a_n} = 2(n - 1)\) ②,
\(① - ②\) 得 \({a_{n + 1}} - {a_{n - 1}} = 2\) ,
∴数列 \(\left\{ {{a_n}} \right\}\) 从第2项起,偶数项成公差为\(2\)的等差数列,从第3项起,奇数项成公差为\(2\)的等差数列
∴数列 \(\left\{ {{a_n}} \right\}\) 单调递增,则满足 \({a_1} < {a_2} < {a_3} < {a_2} + 2\) , ∴ \({a_1} < 2 - 2{a_1} < 2 + 2{a_1} < 4 - 2{a_1}\),解得 \(0 < {a_1} < \frac{1}{2}\) .