“微信扫一扫”进入题库练习及模拟考试
已知数列 \(\{ {a_n}\} \) 的前 \(n\) 项和为 \({S_n}\) , \({a_1}=1\) ,且 \({S_n}=\lambda {a_n} - 1\) (λ为常数).若数列 \(\{ {b_n}\} \) 满足 \({a_n}{b_n}= - {n^2} + 9n - 20\) ,且 \({b_{n + 1}} < {b_n}\) ,则满足条件的\(n\)的取值可以为( )
A.5
B.6
C.7
D.8
参考答案:AB
解析:
当 \(n = 1\) 时, \({a_1} = {S_1} = \lambda {a_1} - 1\) , \(\therefore \lambda - 1 = 1\) ,解得: \(\lambda = 2\)
\(\therefore {S_n} = 2{a_n} - 1\)
当 \(n \geqslant 2\) 且 \(n \in {N^ * }\) 时, \({S_{n - 1}} = 2{a_{n - 1}} - 1\)
\(\therefore {a_n} = {S_n} - {S_{n - 1}} = 2{a_n} - 2{a_{n - 1}}\) ,即: \({a_n} = 2{a_{n - 1}}\)
\(\therefore \)数列 \(\left\{ {{a_n}} \right\}\) 是以\(1\)为首项, \(2\) 为公比的等比数列, \(\therefore {a_n} = {2^{n - 1}}\)
\(\because {a_n}{b_n} = - {n^2} + 9n - 20\) , \(\therefore {b_n} = \frac{{ - {n^2} + 9n - 20}}{{{2^{n - 1}}}}\)
\(\therefore {b_{n + 1}} - {b_n} = \frac{{ - {{\left( {n + 1} \right)}^2} + 9\left( {n + 1} \right) - 20}}{{{2^n}}} - \frac{{ - {n^2} + 9n - 20}}{{{2^{n - 1}}}} = \frac{{{n^2} - 11n + 28}}{{{2^n}}} < 0\)
\(\because {2^n} > 0\) , \(\therefore {n^2} - 11n + 28 = \left( {n - 4} \right)\left( {n - 7} \right) < 0\) ,解得: \(4 < n < 7\)
又 \(n \in {N^ * }\) , \(\therefore n = 5\)或\(6\)
故选:AB