“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)



已知数列 \(\left\{ {{a_n}} \right\}\) 各项均不为零,且 \({a_1} = 3,\frac{{{a_{n + 1}}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 2\left( {n \geqslant 2,n \in {N^*}} \right)\) ,若 \({a_{20}} = 41\) ,则 \({a_9} = \) (       )


A.19

B.20

C.22

D.23


知识点:第四章 数列


参考答案:A


解析:


由 \(\frac{{{a_{n + 1}}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 2\left( {n \geqslant 2,n \in {N^*}} \right)\) 得 , \(\frac{{{a_{n + 1}} - {a_n} + {a_n}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 2\)

则 \(\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}} - \frac{{{a_{n - 1}}}}{{{a_n} - {a_{n - 1}}}} = 1,n \geqslant 2\) .


令 \(\frac{{{a_1}}}{{{a_2} - {a_1}}} = t + 1\) ,则数列 \(\left\{ {\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}}} \right\}\) 是公差为1,首项为\(t+1\)的等差数列,所以\(\frac{{{a_n}}}{{{a_{n + 1}} - {a_n}}} = n + t\) ,所以 \(\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{{n + t + 1}}{{n + t}}\) .


所以 \({a_n} = {a_1} \times \frac{{{a_2}}}{{{a_1}}} \times \frac{{{a_3}}}{{{a_2}}} \times \cdots \times \frac{{{a_n}}}{{{a_{n - 1}}}} = 3 \times \frac{{2 + t}}{{1 + t}} \times \frac{{3 + t}}{{2 + t}} \times \cdots \times \frac{{n + t}}{{n + t - 1}} = \frac{{3n + 3t}}{{1 + t}}(n \geqslant 2)\) 


当 \(n=1\) 时, \({a_1} = 3\) ,也符合上式,所以 \({a_n} = \frac{{3n + 3t}}{{1 + t}}\left( {n \in {N^*}} \right)\) ;


所以 \({a_{20}} = \frac{{60 + 3t}}{{1 + t}} = 41\) ,解得 \(t = \frac{1}{2}\) ,


所以 \({a_n} = \frac{{3n + 3 \times \frac{1}{2}}}{{1 + \frac{1}{2}}}{\rm{ = 2}}n + 1\left( {n \in {N^*}} \right)\) ,


所以 \({a_9} = 19\) ,


故选A.


进入考试题库