当 \(n = 1\) 时, \({a_1} = 2{a_1} - 1\) ,解得: \({a_1} = 1\) ;
当 \(n \geqslant 2\) 时, \({a_n} = {S_n} - {S_{n - 1}} = 2{a_n} - 1 - \left( {2{a_{n - 1}} - 1} \right)\) , \(\therefore {a_n} = 2{a_{n - 1}}\) ,
则数列 \(\left\{ {{a_n}} \right\}\) 是以\(1\)为首项,\(2\)为公比的等比数列, \(\therefore {a_n} = 1 \times {2^{n - 1}} = {2^{n - 1}}\) .
故答案为:\({2^{n - 1}}\).