“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\{ {a_n}\} \) 满足: \({a_1} = 1\) ,且 \((n + 1){a_{n + 1}} - n{a_n} - 3 = 0\) ,若对任意的 \(a \in [ - 2,2]\) ,不等式 \({a_n} \leqslant 2{t^2} + at - 1\) 恒成立,则实数 \(t\) 的范围为___



知识点:第四章 数列


参考答案:\(t \geqslant 2\) 或 \(t \leqslant - 2\)


解析:

由 \((n + 1){a_{n + 1}} - n{a_n} - 3 = 0\) 得, \((n + 1){a_{n + 1}} - n{a_n} = 3\) ,所以数列 \(\{ n{a_n}\} \) 是以 1 为首项,3为公差的等差数列.所以 \(n{a_n} = 1 + 3\left( {n - 1} \right) = 3n - 2\) ,即 \({a_n} = 3 - \frac{2}{n} < 3\) ,

因为 \(g(a) = at + 2{t^2} - 1\) 在 \(a \in [ - 2,2]\) 上单调,所以 \({g_{\min }} = \min \left\{ {g\left( { - 2} \right),g\left( 2 \right)} \right\}\) ,

因此可得 \(\left\{ {\begin{array}{*{20}{c}}
{g\left( { - 2} \right) \geqslant 3} \\\
{g\left( 2 \right) \geqslant 3}
\end{array}} \right.\)
 即 \(\left\{ {\begin{array}{*{20}{c}}
{ - 2t + 2{t^2} - 1 \geqslant 3} \\\
{2t + 2{t^2} - 1 \geqslant 3}
\end{array}} \right.\)
 ,解得 \(t \geqslant 2\) 或 \(t \leqslant - 2\) .

故答案为 \(t \geqslant 2\) 或 \(t \leqslant - 2\) .

进入考试题库