“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第161题



参考答案:\(\left( {{x_1} + {x_2} + {x_3}} \right)\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \frac{1}{{{x_3}}}} \right) = 3 + \left( {\frac{{{x_2}}}{{{x_1}}} + \frac{{{x_1}}}{{{x_2}}}} \right) + \left( {\frac{{{x_3}}}{{{x_1}}} + \frac{{{x_1}}}{{{x_3}}}} \right) + \left( {\frac{{{x_3}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_3}}}} \right) \geqslant 3 + 2 + 2 + 2 = 9\)


第162题



参考答案:猜想 \(\left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_n}}}} \right) \geqslant {n^2}\,\left( {n \geqslant 2,\,n \in {N^*}} \right)\) ,
证明如下:①当 \(n = 2\) 时,由已知得猜想成立;
②假设当 \(n = k\) 时,猜想成立,即 \(\left( {{x_1} + {x_2} + \cdots + {x_k}} \right)\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_k}}}} \right) \geqslant {k^2}\) , 则当 \(n = k + 1\) 时, \(\left( {{x_1} + {x_2} + \cdots + {x_k} + {x_{k + 1}}} \right)\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_k}}} + \frac{1}{{{x_{k + 1}}}}} \right)\) \( = \left( {{x_1} + {x_2} + \cdots + {x_k}} \right)\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_k}}}} \right) + \left( {{x_1} + {x_2} + \cdots + {x_k}} \right)\frac{1}{{{x_{k + 1}}}} + {x_{k + 1}}\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_k}}}} \right) + 1\) \( \geqslant {k^2} + \left( {{x_1} + {x_2} + \cdots + {x_k}} \right)\frac{1}{{{x_{k + 1}}}} + {x_{k + 1}}\left( {\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \cdots + \frac{1}{{{x_k}}}} \right) + 1\) \( = {k^2} + \left( {\frac{{{x_1}}}{{{x_{k + 1}}}} + \frac{{{x_{k + 1}}}}{{{x_1}}}} \right) + \left( {\frac{{{x_2}}}{{{x_{k + 1}}}} + \frac{{{x_{k + 1}}}}{{{x_2}}}} \right) + \cdots + \left( {\frac{{{x_2}}}{{{x_{k + 1}}}} + \frac{{{x_{k + 1}}}}{{{x_2}}}} \right) + 1\) ,\( \geqslant {k^2} + 2 + 2 + \cdots + 2 + 1 = {k^2} + 2k + 1 = {\left( {k + 1} \right)^2}\) 所以当 \(n = k + 1\) 时原式成立.
综合①②可知,猜想成立.


第163题



参考答案:猜想: \(n\) 个平面最多将空间分成\( {C}_{n}^{0}+{C}_{n}^{1}+{C}_{n}^{2}+{C}_{n}^{3}\)个部分( \(n > 2\) );


第164题



参考答案:证明:设 \(n\) 个平面可将空间最多分成\(f(n)\)个部分,

当\(n=3\)时,3个平面可将空间分成8个部分,\( {C}_{3}^{0}+{C}_{3}^{1}+{C}_{3}^{2}+{C}_{3}^{3}=8\),所以结论成立.

假设当n=k时,\( \mathrm{f}\left(k\right)={C}_{k}^{0}+{C}_{k}^{1}+{C}_{k}^{2}+{C}_{k}^{3}\),则当\(n=k+1\)时,第 \(k + 1\) 个平面必与前面的 \(k\) 个平面产生\(k\)条交线,而由已知,这 \(k\) 条交线把第 \(k + 1\) 个平面最多分成 \( {C}_{k}^{0}+{C}_{k}^{1}+{C}_{k}^{2}\) 个部分,且每一部分将原有的空间分成两个部分,所以

\(f\left ( {k+1} \right )={f\left ( {k} \right )+C}^{0}_{k}+{C}^{1}_{k}+{C}^{2}_{k}=\left ( {{{C}^{0}_{k}+C}^{1}_{k}+{C}^{2}_{k}+{C}^{3}_{k}} \right )+\left ( {{{C}^{0}_{k}+C}^{1}_{k}+{C}^{2}_{k}} \right )\) 

\( {=C}_{k+1}^{0}+\left({{C}_{k}^{1}+C}_{k}^{0}\right)+\left({{C}_{k}^{2}+C}_{k}^{1}\right)+\left({{C}_{k}^{3}+C}_{k}^{2}\right){=C}_{k+1}^{0}+{C}_{k+1}^{1}+{C}_{k+1}^{2}+{C}_{k+1}^{3}\)

因此,当\(n=k+1\)时,结论成立.由数学归纳法原理可知,对 \(n \in {N^*}\) 且 \(n > 2\) ,得证.


第165题


A.回归直线 \(\hat y = \hat bx + \hat a\)至少经过点 \(\left( {{x_1},{y_1}} \right)\) , \(\left( {{x_2},{y_2}} \right)\) ,…, \(\left( {{x_n},{y_n}} \right)\) 中的一个点

B.若 \(\overline x = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \) , \(\overline y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_1}} \) ,则回归直线 \(\hat y = \hat bx + \hat a\) 定经过点 \(\left( {\bar x,\bar y} \right)\)

C.若点 \(\left( {{x_1},{y_1}} \right)\) , \(\left( {{x_2},{y_2}} \right)\) ,…, \(\left( {{x_n},{y_n}} \right)\) 都在直线 \(x - y + 2 = 0\) 上,则变量 \(x\) , \(y\) 的相关系数 \(r = 1\)

D.若变量 \(x\) 增加一个单位时,则变量 \(y\) 平均增加或减少 \(\left| {\hat b} \right|\) 个单位


参考答案:BCD



第167题


A.\( \widehat{y}=3.2x-24\)

B.\( \widehat{y}=-3.2x+40\)

C.\( \widehat{y}=3x-24\)

D.\( \widehat{y}=-3x+40\)


参考答案:B



第169题


A.相关变量 \(x\) , \(y\) 具有正相关关系

B.去除两个歧义点后的回归直线方程为 \(\widehat y = 3x - 3\)

C.去除两个歧义点后,样本 \(\left( {4,8.9} \right)\) 的残差为 \( - 0.1\)

D.去除两个歧义点后,随 \(x\) 值增加相关变量 \(y\) 值增加速度变小


参考答案:ABC


第170题


A.\(y\) 与 \(x\) 的相关系数 \(r < 0\)

B.产量为8吨时预测所需材料约为5.95吨

C.\(a = 0.35\)

D.产品产量增加1吨时,所需材料一定增加0.7吨


参考答案:BC



第172题



参考答案:\(\hat y\)=\(\frac{5}{2}\)\(x\)\( - 3\)

解:因为 \(\overline x = \frac{1}{3}\left( {11 + 13 + 12} \right) = 12,\overline y = \frac{1}{3}\left( {25 + 30 + 26} \right) = 27\)

所以 \(\sum\limits_{i = 1}^3 {({x_i} - \overline x )({y_i} - \overline y )} = 5,\sum\limits_{i = 1}^3 {{{({x_i} - \overline x )}^2}} = 2\)

则 \(\hat b = \frac{{\sum\limits_{i = 1}^3 {({x_i} - \overline x )({y_i} - \overline y )} }}{{\sum\limits_{i = 1}^3 {{{({x_i} - \overline x )}^2}} }} = \frac{5}{2}\),\(\hat a = \overline y - \hat b\overline x = - 3\)

所以回归直线方程为 \(\hat{y}=\frac {5} {2}x-3\)


第173题



参考答案:可靠当 \(x = 10\) 时,\(\widehat y = \frac{5}{2} \times 10 - 3 = 22\),\(\left| {22 - 23} \right| < 2\)当 \(x = 8\) 时,\(\widehat y = \frac{5}{2} \times 8 - 3 = 17\),\(\left| {17 - 16} \right| < 2\)数据的误差均不超过2颗,所以得到的线性回归方程是可靠的.


第174题



参考答案:\(32\% \)当 \(x = 14\) 时,\(\widehat y = \frac{5}{2} \times 14 - 3 = 32\)所以温差为14℃的发芽率是 \(32\% \).


第175题


A.\(\frac{{2017}}{2}\)

B.\(1009\)

C.\(\frac{{2019}}{2}\)

D.\(1010\)


参考答案:B


解析:

在数列 \(\left\{ {{a_n}} \right\}\)中,\({a_1} = \frac{1}{2}\)\({a_{n + 1}} = 1 - \frac{1}{{{a_n}}}\),则 \({a_2} = 1 - \frac{1}{{{a_1}}} = - 1\)\({a_3} = 1 - \frac{1}{{{a_2}}} = 2\)\({a_4} = 1 - \frac{1}{{{a_3}}} = \frac{1}{2}\),以此类推可知,对任意的 \(n \in {N^ * }\)\({a_{n + 3}} = {a_n}\),即数列 \(\left\{ {{a_n}} \right\}\) 是以\(3\)为周期的周期数列,

\(\because 2021 = 3 \times 673 + 2\), 因此,\({S_{2021}} = 673{S_3} + {a_1} + {a_2} = 674{S_3} - {a_3} = 674 \times \left( {\frac{1}{2} - 1 + 2} \right) - 2 = 1009\).

故选:B.


第176题


A.\(2\left( {n - 1} \right)\)

B.\(2n\)

C.\({2^{n - 1}}\)

D.\({2^n}\)


参考答案:D


解析:

由题意 \(n*2 = [(n - 1)*2] \times 2 = [(n - 2)*2] \times {2^2} = \cdots = (1*2) \times {2^{n - 1}} = {2^n}\).故选:D.


第177题


A.\( - 4044\)

B.\( - 2022\)

C.2022

D.4044


参考答案:A


解析:

解:因为 \(f( - x) = - \frac{1}{3}{x^3} - 4x = - f(x),\therefore f(x)\) 是奇函数,

因为 \(f\left( {{a_1} + 2} \right) = 100\)\(f\left( {{a_{2022}} + 2} \right) = - 100\),所以 \(f\left( {{a_1} + 2} \right) = - f({a_{2022}} + 2)\)

所以 \({a_1} + 2 + {a_{2022}} + 2 = 0\),所以 \({a_1} + {a_{2022}} = - 4\)

所以 \({S_{2022}} = \frac{{2022}}{2}({a_1} + {a_{2022}}) = - 4044\). 故选:A


第178题



参考答案:\(\frac{5}{{32}}\)


解析:

因为 \({S_n} = \frac{{3{n^2} + n}}{2}\left( {n \in {N^*}} \right)\),所以 \({S_{n - 1}} = \frac{{3{{(n - 1)}^2} + n - 1}}{2} = \frac{{3{n^2} - 5n + 2}}{2}(n \geqslant 2)\)

所以 \({a_n} = {S_n} - {S_{n - 1}} = \frac{{3{n^2} + n}}{2} - \frac{{3{n^2} - 5n + 2}}{2} = 3n - 1,(n \geqslant 2)\)

又 \({a_1} = {S_1} = \frac{{3 \times 1 + 1}}{2} = 2\) 满足上式,

所以 \({a_n} = 3n - 1,\left( {n \in {N^*}} \right)\)

所以 \(\frac{1}{{{a_n}{a_{n + 1}}}} = \frac{1}{{(3n - 1)(3n + 2)}} = \frac{1}{3}\left( {\frac{1}{{3n - 1}} - \frac{1}{{3n{\rm{ + }}2}}} \right)\)

所以数列 \(\left\{ {\frac{1}{{{a_n}{a_{n + 1}}}}} \right\}\) 的前10项和为 \(\frac{1}{3}\left( {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \cdot \cdot \cdot + \frac{1}{{29}} - \frac{1}{{32}}} \right) = \frac{1}{3} \times \left( {\frac{1}{2} - \frac{1}{{32}}} \right) = \frac{5}{{32}}\)

故答案为:\(\frac{5}{{32}}\)


第179题


A.\({S_n} = {n^2} - 3n\)

B.\({S_n} = \frac{{3{n^2} - 9n}}{2}\)

C.\({a_n} = 3n - 6\)

D.\({{a}_{n}}=2n\)


参考答案:BC


解析:

解:设等差数列 \(\left\{ {{a_n}} \right\}\) 的公差为 \(d\),因为 \({S_3} = 0\)\({a_4} = 6\)

所以 \(\begin{cases}
3{a_1} + \frac{{3 \times 2}}{2}d = 0 \\\
{a_1} + 3d = 6 \\\
\end{cases}\)
,解得 \(\begin{cases}
{a_1} = - 3 \\\
d = 3 \\\
\end{cases}\)

所以 \({a_n} = {a_1} + (n - 1)d = - 3 + 3(n - 1) = 3n - 6\)

\({S_n} = n{a_1} + \frac{{n(n - 1)}}{2}d = - 3n + \frac{{3n(n - 1)}}{2} = \frac{{3{n^2} - 9n}}{2}\)

故选:BC


第180题



参考答案:\(\frac{{19}}{2}\)


解析:

函数 \(f(x) = \frac{1}{{x + 1}}\),当 \(x > 0\) 时,\(f(x) + f(\frac{1}{x}) = \frac{1}{{1 + x}} + \frac{1}{{1 + \frac{1}{x}}} = \frac{1}{{1 + x}} + \frac{x}{{1 + x}} = 1\)

因数列 \(\left\{ {{a_n}} \right\}\) 是正项等比数列,且 \({a_{10}} = 1\),则 \({a_1}{a_{19}} = {a_2}{a_{18}} = {a_3}{a_{17}} = \cdots = a_{10}^2 = 1\)

\(f({a_1}) + f({a_{19}}) = f({a_1}) + f(\frac{1}{{{a_1}}}) = 1\),同理\(f({a_2}) + f({a_{18}}) = f({a_3}) + f({a_{17}}) = \cdots = f({a_{10}}) + f({a_{10}}) = 1\)

令 \(S = f\left( {{a_1}} \right) + f\left( {{a_2}} \right) + f\left( {{a_3}} \right) + \cdots + f\left( {{a_{18}}} \right) + f\left( {{a_{19}}} \right)\)

又 \(S = f\left( {{a_{19}}} \right) + f\left( {{a_{18}}} \right) + f\left( {{a_{17}}} \right) + \cdots + f\left( {{a_2}} \right) + f\left( {{a_1}} \right)\)

则有 \(2S = 19\)\(S = \frac{{19}}{2}\)

所以 \(f\left( {{a_1}} \right) + f\left( {{a_2}} \right) + f\left( {{a_3}} \right) + \cdot \cdot \cdot + f\left( {{a_{18}}} \right) + f\left( {{a_{19}}} \right) = \frac{{19}}{2}\).

故答案为:\(\frac{{19}}{2}\)


进入题库练习及模拟考试