“微信扫一扫”进入考试题库练习及模拟考试
第201题
设
参考答案:解:\(\because {b_n} = \frac{4}{{{a_n} \cdot {a_{n + 1}}}} = \frac{4}{{\left( {4n - 2} \right)\left( {4n + 2} \right)}} = \frac{1}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \frac{1}{2}\left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)\),\(\therefore {S_n} = \frac{1}{2}\left[ {\left( {1 - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{7}} \right) + \cdots + \left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)} \right] = \frac{1}{2}\left( {1 - \frac{1}{{2n + 1}}} \right) = \frac{n}{{2n + 1}}\).
第202题
求
参考答案:解:设公比为\(q\),∵\({a_1} = 1\),\({a_3}{a_4} = \frac{1}{{32}}\),∴\({q^5} = \frac{1}{{32}}\),∴\(q = \frac{1}{2}\),∴\({a_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\);\({S_n} = \frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - {\left( {\frac{1}{2}} \right)^{n - 1}}\)
参考答案:解:∵\({b_n} = {\log _2}{a_n} = {\log _2}{\left( {\frac{1}{2}} \right)^{n - 1}} = 1 - n\),∴\(\frac{1}{{{b_{n + 1}}{b_{n + 2}}}} = \frac{1}{{n(n + 1)}} = \frac{1}{n} - \frac{1}{{n + 1}}\),∴\({T_{100}} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdot \cdot \cdot + \frac{1}{{100}} - \frac{1}{{101}} = 1 - \frac{1}{{101}} = \frac{{100}}{{101}}\).
第204题
求数列
参考答案:解:当\(n=1\)时,\( 3{a}_{1}-2{S}_{1}={a}_{1}=2\),
当 \(n\geq 2\) 时,由\( 2{S}_{n}=3{a}_{n}-2\)可得\( 2{S}_{n-1}=3{a}_{n-1}-2\),
上述两个等式作差得 \( 2{a}_{n}=3{a}_{n}-3{a}_{n-1}\),则\( {a}_{n}=3{a}_{n-1}\),
所以,数列 \( \left\{{a}_{n}\right\}\) 是首项为\(2\),公比为\(3\)的等比数列,故\( {a}_{n}=2\times {3}^{n-1}\).
设等差数列 \( \left\{{b}_{n}\right\}\) 的公差为\(d\),则\(d≠0\),因为 \({b}^{2}_{4}={b}_{2}\cdot {b}_{8}\),即\( {\left(1+3d\right)}^{2}=\left(1+d\right)\left(1+7d\right)\),
解得 \(d=1\),因此,\( {b}_{n}={b}_{1}+\left(n-1\right)d=n\).
参考答案:解:由已知可得\( {c}_{n}=\left\{\begin{array}{c}2\times {3}^{n},n为偶数\\ n+2,n为奇数\end{array}\right.\),
所以,\( {T}_{2n}=\left(3+2\times {3}^{2}\right)+\left(5+2\times {3}^{4}\right)+\cdots +\left(2n+1+2\times {3}^{2n}\right)
=\left[3+5+\cdots +\left(2n+1\right)\right]+\left(2\times {3}^{2}+2\times {3}^{4}+\cdots +2\times {3}^{2n}\right)
=\frac{\left(3+2n+1\right)n}{2}+\frac{18\left(1-{9}^{n}\right)}{1-9}
={n}^{2}+2n+\frac{9\left({9}^{n}-1\right)}{4}\)
A.\(\frac {3} {4}\)
B.\(\frac {1} {2}\)
C.1
D.3
参考答案:A
第207题
设函数\(f\left( x \right) = x{\rm{lg}}x - x\),当\(x\)由1变到10时,\(f\left( x \right)\)的平均变化率为( )
A.\(\frac {1} {9}\)
B.\(\frac {5} {9}\)
C.\(\frac {13} {18}\)
D.\(\frac {17} {18}\)
参考答案:A
第208题
若函数\(f\left( x \right) = {x^2} - 2\)在区间\((1,m)\)上的平均变化率为3,则\(m\)等于( )
A.\(\sqrt {5}\)
B.2
C.3
D.1
参考答案:B
A.前3s内球滚下的垂直距离的增量\(Δh=20\)m
B.在时间\(\left [ {2,3} \right ]\)内球滚下的垂直距离的增量\(Δh=12\)m
C.前3s内球在垂直方向上的平均速度为\(8{\text{m}/\text{s}}\)
D.在时间\(\left [ {2,3} \right ]\)内球在垂直方向上的平均速度为\(12{\text{m}/\text{s}}\)
参考答案:BCD
第211题
自变量的增量
参考答案:0.1
解析:
函数的平均变化率为
第212题
函数的增量
参考答案:0.21
解析:
函数的平均变化率为
第213题
函数的平均变化率.
参考答案:2.1
解析:
函数的平均变化率为
参考答案:\({k_1} > {k_2}\)
A.\(\frac {123} {6}\text{m}/\text{s}\)
B.\(\frac {125} {16}\text{m}/\text{s}\)
C.\(8\text{m}/\text{s}\)
D.\(\frac {67} {4}\text{m}/\text{s}\)
参考答案:B
A.1
B.\(\frac{5}{6}\)
C.\(\frac{1}{2}\)
D.\(\frac{1}{3}\)
参考答案:D
A.\(0 < f'(2) < f'(3) < f(3) - f(2)\)
B.\(0 < f'(3) < f(3) - f(2) < f'(2)\)
C.\(0<f\left ( {3} \right )-f\left ( {2} \right )<{f}^{\, '}\left ( {3} \right )<{f}^{\, '}\left ( {2} \right )\)
D.\(0 < f(3) - f(2) < {f^\prime }(2) < f(3)\)
参考答案:B
第220题
物体在
参考答案:\(\frac{1}{2}g\left( {2{t_0} + \Delta t} \right)\)
解析:
平均速度为
瞬时速度为