“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第201题



参考答案:解:\(\because {b_n} = \frac{4}{{{a_n} \cdot {a_{n + 1}}}} = \frac{4}{{\left( {4n - 2} \right)\left( {4n + 2} \right)}} = \frac{1}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \frac{1}{2}\left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)\),\(\therefore {S_n} = \frac{1}{2}\left[ {\left( {1 - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{7}} \right) + \cdots + \left( {\frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}} \right)} \right] = \frac{1}{2}\left( {1 - \frac{1}{{2n + 1}}} \right) = \frac{n}{{2n + 1}}\).


第202题



参考答案:解:设公比为\(q\),∵\({a_1} = 1\),\({a_3}{a_4} = \frac{1}{{32}}\),∴\({q^5} = \frac{1}{{32}}\),∴\(q = \frac{1}{2}\),∴\({a_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\);\({S_n} = \frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - {\left( {\frac{1}{2}} \right)^{n - 1}}\)


第203题



参考答案:解:∵\({b_n} = {\log _2}{a_n} = {\log _2}{\left( {\frac{1}{2}} \right)^{n - 1}} = 1 - n\),∴\(\frac{1}{{{b_{n + 1}}{b_{n + 2}}}} = \frac{1}{{n(n + 1)}} = \frac{1}{n} - \frac{1}{{n + 1}}\),∴\({T_{100}} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdot \cdot \cdot + \frac{1}{{100}} - \frac{1}{{101}} = 1 - \frac{1}{{101}} = \frac{{100}}{{101}}\).


第204题



参考答案:解:当\(n=1\)时,\( 3{a}_{1}-2{S}_{1}={a}_{1}=2\),

当 \(n\geq 2\) 时,由\( 2{S}_{n}=3{a}_{n}-2\)可得\( 2{S}_{n-1}=3{a}_{n-1}-2\),

上述两个等式作差得 \( 2{a}_{n}=3{a}_{n}-3{a}_{n-1}\),则\( {a}_{n}=3{a}_{n-1}\),

所以,数列 \( \left\{{a}_{n}\right\}\) 是首项为\(2\),公比为\(3\)的等比数列,故\( {a}_{n}=2\times {3}^{n-1}\).

设等差数列 \( \left\{{b}_{n}\right\}\) 的公差为\(d\),则\(d≠0\),因为 \({b}^{2}_{4}={b}_{2}\cdot {b}_{8}\),即\( {\left(1+3d\right)}^{2}=\left(1+d\right)\left(1+7d\right)\),

解得 \(d=1\),因此,\( {b}_{n}={b}_{1}+\left(n-1\right)d=n\).


第205题



参考答案:解:由已知可得\( {c}_{n}=\left\{\begin{array}{c}2\times {3}^{n},n为偶数\\ n+2,n为奇数\end{array}\right.\),
所以,\( {T}_{2n}=\left(3+2\times {3}^{2}\right)+\left(5+2\times {3}^{4}\right)+\cdots +\left(2n+1+2\times {3}^{2n}\right)
=\left[3+5+\cdots +\left(2n+1\right)\right]+\left(2\times {3}^{2}+2\times {3}^{4}+\cdots +2\times {3}^{2n}\right)
=\frac{\left(3+2n+1\right)n}{2}+\frac{18\left(1-{9}^{n}\right)}{1-9}
={n}^{2}+2n+\frac{9\left({9}^{n}-1\right)}{4}\)



第207题


A.\(\frac {1} {9}\)

B.\(\frac {5} {9}\)

C.\(\frac {13} {18}\)

D.\(\frac {17} {18}\)


参考答案:A




第210题


A.前3s内球滚下的垂直距离的增量\(Δh=20\)m

B.在时间\(\left [ {2,3} \right ]\)内球滚下的垂直距离的增量\(Δh=12\)m

C.前3s内球在垂直方向上的平均速度为\(8{\text{m}/\text{s}}\)

D.在时间\(\left [ {2,3} \right ]\)内球在垂直方向上的平均速度为\(12{\text{m}/\text{s}}\)


参考答案:BCD


第211题



参考答案:0.1


解析:


\(Δx=1.1-1=0.1\)





\(Δy=f(1.1)-f(1)=({1.{1}^{2}}-1)-({{1}^{2}}-1)=0.21\)




函数的平均变化率为\(\frac {Δy} {Δx}=\frac {0.21} {0.1}=2.1\)







第212题



参考答案:0.21


解析:


\(Δx=1.1-1=0.1\)





\(Δy=f(1.1)-f(1)=({1.{1}^{2}}-1)-({{1}^{2}}-1)=0.21\)




函数的平均变化率为\(\frac {Δy} {Δx}=\frac {0.21} {0.1}=2.1\)







第213题



参考答案:2.1


解析:


\(Δx=1.1-1=0.1\)





\(Δy=f(1.1)-f(1)=({1.{1}^{2}}-1)-({{1}^{2}}-1)=0.21\)




函数的平均变化率为\(\frac {Δy} {Δx}=\frac {0.21} {0.1}=2.1\)









第216题


A.\(\frac {123} {6}\text{m}/\text{s}\)

B.\(\frac {125} {16}\text{m}/\text{s}\)

C.\(8\text{m}/\text{s}\)

D.\(\frac {67} {4}\text{m}/\text{s}\)


参考答案:B



第218题


A.\(0 < f'(2) < f'(3) < f(3) - f(2)\)

B.\(0 < f'(3) < f(3) - f(2) < f'(2)\)

C.\(0<f\left ( {3} \right )-f\left ( {2} \right )<{f}^{\, '}\left ( {3} \right )<{f}^{\, '}\left ( {2} \right )\)

D.\(0 < f(3) - f(2) < {f^\prime }(2) < f(3)\)


参考答案:B



第220题



参考答案:\(\frac{1}{2}g\left( {2{t_0} + \Delta t} \right)\)


解析:


平均速度为\(\frac {Δs} {Δt}=\frac {\frac {1} {2}g{{({{t}_{0}}+Δt)}^{2}}-\frac {1} {2}g{{t}_{0}}^{2}} {Δt}=\frac {1} {2}g\frac {2{{t}_{0}}Δt+{{(Δt)}^{2}}} {Δt}=\frac {1} {2}g(2{{t}_{0}}+Δt)\)




瞬时速度为\(\mathop{\lim}\limits_{Δt\to 0}\frac {Δs} {Δt}=\mathop{\lim}\limits_{Δt\to 0}\frac {1} {2}g(2{{t}_{0}}+Δt)=g{{t}_{0}}\)







进入题库练习及模拟考试