“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知 \(\left\{ {{a_n}} \right\}\) 为等比数列,前\(n\)项和为 \({S_n}\left( {n \in {N^*}} \right)\)\({a_1} = 1\)\({a_3}{a_4} = \frac{1}{{32}}\).



若 \({b_n} = {\log _2}{a_n}\) ,求数列 \(\left\{ {\frac{1}{{{b_{n + 1}}{b_{n + 2}}}}} \right\}\) 的前\(100\) 项和\({T}_{100}\)  .




知识点:第四章 数列


参考答案:解:∵\({b_n} = {\log _2}{a_n} = {\log _2}{\left( {\frac{1}{2}} \right)^{n - 1}} = 1 - n\),∴\(\frac{1}{{{b_{n + 1}}{b_{n + 2}}}} = \frac{1}{{n(n + 1)}} = \frac{1}{n} - \frac{1}{{n + 1}}\),∴\({T_{100}} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdot \cdot \cdot + \frac{1}{{100}} - \frac{1}{{101}} = 1 - \frac{1}{{101}} = \frac{{100}}{{101}}\).

进入考试题库