“微信扫一扫”进入题库练习及模拟考试
设数列
对任意的正整数 \(n\),设\( {c}_{n}=\left\{\begin{array}{c}{a}_{n},n为偶数\\ {b}_{n+2},n为奇数\end{array}\right.\),求数列 \( \left\{{c}_{n}\right\}\) 的前 \(2n\) 项和\( {T}_{2n}\).
参考答案:解:由已知可得\( {c}_{n}=\left\{\begin{array}{c}2\times {3}^{n},n为偶数\\ n+2,n为奇数\end{array}\right.\),
所以,\( {T}_{2n}=\left(3+2\times {3}^{2}\right)+\left(5+2\times {3}^{4}\right)+\cdots +\left(2n+1+2\times {3}^{2n}\right)
=\left[3+5+\cdots +\left(2n+1\right)\right]+\left(2\times {3}^{2}+2\times {3}^{4}+\cdots +2\times {3}^{2n}\right)
=\frac{\left(3+2n+1\right)n}{2}+\frac{18\left(1-{9}^{n}\right)}{1-9}
={n}^{2}+2n+\frac{9\left({9}^{n}-1\right)}{4}\)