“微信扫一扫”进入考试题库练习及模拟考试
第241题
函数\(y={x}^{2}\cos {2x}\)的导数为( )
A.\({y}^{,}=2x\cos {2x}-{x}^{2}\sin {2x}\)
B.\({y}^{,}={x}^{2}\cos {2x}-2x\sin {2x}\)
C.\({y}^{,}=2x\cos {2x}-2{x}^{2}\sin {2x}\)
D.\({y}^{,}=2x\cos {2x}+2{x}^{2}\sin {2x}\)
参考答案:C
第242题
函数\(y=\sin^{3} {\frac {1} {x}}\)的导数是( )
A.\({y}^{,}=-\frac {3} {{x}^{2}}\sin^{2} {\frac {1} {x}}\)
B.\({y}^{,}=-\frac {3} {{2x}^{2}}\sin^{2} {\frac {2} {x}}\)
C.\({y}^{,}=-\frac {3} {{x}^{2}}\cos {\frac {1} {x}}\sin^{2} {\frac {1} {x}}\)
D.\({y}^{,}=-\frac {3} {{2x}^{2}}\sin {\frac {1} {x}\sin {\frac {2} {x}}}\)
参考答案:A
第243题
下列求函数的导数正确的是( )
A.\(\left [ {\ln {\left ( {2x+1} \right )}} \right ]^{\, '}=\frac {2} {2x+1}\)
B.\(\left ( {{e}^{5x-4}} \right )^{\, '}={e}^{5x-4}\)
C.\(\left ( {\sqrt {2x-1}} \right )^{\, '}=\frac {1} {\sqrt {2x-1}}\)
D.\(\left [ {\cos {\left ( {2x+\frac {\pi } {3}} \right )}} \right ]^{\, '}=2\sin {\left ( {2x+\frac {\pi } {3}} \right )}\)
参考答案:AC
第244题
函数\(y=\frac {\sqrt {1+{x}^{2}}} {2x-1}\)的导函数为\({y}^{,}=\)___
参考答案:\(-\frac {x+2} {\left ( {2x-1} \right )^{2}\sqrt {1+{x}^{2}}}\)
第245题
设函数\(y=f\left ( {{2}^{-x}} \right )\)可导,则\({y}^{,}=\)___
参考答案:\(-{2}^{-x}{f}^{\, '}\left ( {{2}^{-x}} \right )\ln {2}\)
第246题
下列求导正确的是( )
A.若\(y=\cos {\frac {1} {x}}\),则\({y}^{,}=-\frac {1} {{x}^{2}}\sin {\frac {1} {x}}\)
B.若\(y=\sin {{x}^{2}}\),则\({y}^{,}=2x\cos {{x}^{2}}\)
C.若\(y=\cos {5x}\),则\({y}^{,}=-5\sin {5x}\)
D.若\(y=\frac {1} {2}x\sin {2x}\),则\({y}^{,}=x\sin {2x}\)
参考答案:BC
参考答案:10
解析:
【详解】
第248题
\(y=\sin^{2} {\left ( {2x+\frac {\pi } {3}} \right )}\)
参考答案:\({y}^{,}=2\sin {\left ( {4x+\frac {2\pi } {3}} \right )}\)
解析:\({y}^{,}=2\sin {\left ( {2x+\frac {\pi } {3}} \right )}\cdot 2\cos {\left ( {2x+\frac {\pi } {3}} \right )}=2\sin {\left ( {4x+\frac {2\pi } {3}} \right )}\)
第249题
参考答案:\({y}^{,}=-2\sin {4x}\)
解析:
第250题
参考答案:\({y}^{,}=\frac {2x} {\left ( {1-2{x}^{2}} \right )\sqrt {1-2{x}^{2}}}\)
解析:
第251题
已知函数\(f\left ( {x} \right )=\frac {\ln {x}} {x}\),则\({f}^{\, '}\left ( {x} \right )=\)( )
A.\(\frac {1-\ln {x}} {{x}^{2}}\)
B.\(\frac {1+\ln {x}} {{x}^{2}}\)
C.\(\frac {\ln {x+1}} {x}\)
D.\(\frac {\ln {x-1}} {x}\)
参考答案:A
第252题
函数\(y={x}^{2}\cos {x}\)的导数为( )
A.\({y}^{,}=2x\cos {x}-{x}^{2}\sin {x}\)
B.\({y}^{,}=-2x\sin {x}\)
C.\({y}^{,}=2x\cos {x}+{x}^{2}\sin {x}\)
D.\({y}^{,}=x\cos {x}-{x}^{2}\sin {x}\)
参考答案:A
第253题
下列求导过程正确的是( )
A.\(\left ( {{x}^{2}+{2}^{x}} \right )^{'}=2x+{2}^{x}\ln {2}\)
B.\(\left ( {{x}^{2}{e}^{x}} \right )^{'}=\left ( {2x+{x}^{2}} \right ){e}^{x}\)
C.\(\left ( {\frac {{x}^{2}} {\ln {x}}} \right )^{'}=\frac {x-2\ln {x}} {\text{ln}^{2}x}\)
D.\(\left ( {{x}^{3}-\frac {1} {x}} \right )^{'}=3{x}^{2}+\frac {1} {{x}^{2}}\)
参考答案:ABD
第254题
下列函数求导正确的是( )
A.\(\left ( {x\cos {x}} \right )^{'}=\cos {x-x\sin {x}}\)
B.\(\left ( {x\ln {x}} \right )^{'}=\ln {x}+1\)
C.\(\left ( {{e}^{x}\sin {x}} \right )^{'}={e}^{x}\left ( {\sin {x+\cos {x}}} \right )\)
D.\(\left ( {\frac {\cos {x}} {{e}^{x}}} \right )^{'}=\frac {\sin {x-\cos {x}}} {{e}^{x}}\)
参考答案:ABC
参考答案:设\(g\left ( {x} \right )=\left ( {x+1} \right )\left ( {x+2} \right )\left ( {x+3} \right )\left ( {x+4} \right )\left ( {x+5} \right )\),则\(f\left ( {x} \right )=xg\left ( {x} \right )\)
所以\({f}^{\, '}\left ( {x} \right )=g\left ( {x} \right )+x{g}^{\, '}\left ( {x} \right )\),所以\({f}^{\, '}\left ( {0} \right )=g\left ( {0} \right )=1\times 2\times 3\times 4\times 5=120\).
第257题
若直线\(y=kx\)与曲线\(y={x}^{3}-3{x}^{2}+2x\)相切,求\(k\)的值.
参考答案:设切点坐标为\(\left ( {{x}_{0},{x}^{3}_{0}-3{x}^{2}_{0}+2} \right )\),\({y}^{,}=3{x}^{2}-6x+2\),则\(\left \{ \begin{gathered} {k=3{x}^{2}_{0}-6{x}_{0}+2} \\ {{k{x}_{0}=x}^{3}_{0}-3{x}^{2}_{0}+2{x}_{0}} \end{gathered} \right .\)
解得\(k=2\)或\(-\frac {1} {4}\).
参考答案:\(\frac {2} {3}\)
第259题
下列求导过程正确的是( )
A.\( (\mathrm{cos}\frac{\pi }{3}{)}^{\text{'}}=-\mathrm{sin}\frac{\pi }{3}\)
B.\( ({2}^{x}{)}^{\mathrm{\text{'}}}=x\cdot {2}^{x-1}\)
C.\( (\mathrm{sin}x{)}^{\mathrm{\text{'}}}=-\mathrm{cos}x\)
D.\( (\sqrt{x}{)}^{\text{'}}=\frac{1}{2\sqrt{x}}\)
参考答案:D
第260题
下列求导过程错误的是( )
A.\( (\mathrm{ln}2{)}^{\text{'}}=\frac{1}{2}\)
B.\( (\frac{1}{{x}^{2}}{)}^{\text{'}}=\frac{2}{{x}^{3}}\)
C.\( (\mathrm{cos}x{)}^{\text{'}}=-\mathrm{sin}x\)
D.\( ({3}^{x}{)}^{\text{'}}={3}^{x}{\mathrm{log}}_{3}e\)
参考答案:ABD