高中数学选择性必修 第二册(381题)
已知\(f\left ( {x} \right )=\left ( {x+\sqrt {1+{x}^{2}}} \right )^{10}\),求\(\frac {{f}^{\, '}\left ( {0} \right )} {f\left ( {0} \right )}\)
知识点:第五章 一元函数的导数及其应用
参考答案:10
解析:
【详解】
\({f}^{\, '}\left ( {x} \right )=\left ( {\left ( {x+\sqrt {1+{x}^{2}}} \right )^{10}} \right )^{\, '}=10\left ( {x+\sqrt {1+{x}^{2}}} \right )^{9}\left ( {1+\frac {1} {2}\cdot \frac {2x} {\sqrt {1+2{x}^{2}}}} \right )\)
\(\therefore {f}^{\, '}\left ( {0} \right )=10,f\left ( {0} \right )=1⇒\frac {{f}^{\, '}\left ( {0} \right )} {f\left ( {0} \right )}=10\)