“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)



已知\(f\left ( {x} \right )=\left ( {x+\sqrt {1+{x}^{2}}} \right )^{10}\),求\(\frac {{f}^{\, '}\left ( {0} \right )} {f\left ( {0} \right )}\)




知识点:第五章 一元函数的导数及其应用


参考答案:10


解析:

【详解】



\({f}^{\, '}\left ( {x} \right )=\left ( {\left ( {x+\sqrt {1+{x}^{2}}} \right )^{10}} \right )^{\, '}=10\left ( {x+\sqrt {1+{x}^{2}}} \right )^{9}\left ( {1+\frac {1} {2}\cdot \frac {2x} {\sqrt {1+2{x}^{2}}}} \right )\)



\(\therefore {f}^{\, '}\left ( {0} \right )=10,f\left ( {0} \right )=1⇒\frac {{f}^{\, '}\left ( {0} \right )} {f\left ( {0} \right )}=10\)





进入考试题库