“微信扫一扫”进入题库练习及模拟考试
已知函数\(f\left ( {x} \right )=x\left ( {x+1} \right )\left ( {x+2} \right )\left ( {x+3} \right )\left ( {x+4} \right )\left ( {x+5} \right )\),求\({f}^{\, '}\left ( {0} \right )\).
参考答案:设\(g\left ( {x} \right )=\left ( {x+1} \right )\left ( {x+2} \right )\left ( {x+3} \right )\left ( {x+4} \right )\left ( {x+5} \right )\),则\(f\left ( {x} \right )=xg\left ( {x} \right )\)
所以\({f}^{\, '}\left ( {x} \right )=g\left ( {x} \right )+x{g}^{\, '}\left ( {x} \right )\),所以\({f}^{\, '}\left ( {0} \right )=g\left ( {0} \right )=1\times 2\times 3\times 4\times 5=120\).