“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第301题



参考答案:由(1)可知,函数\(f\left( x \right)\)在\(\left[ { - 1,0} \right)\)上单调递增,在\(\left( {0,\frac{4}{3}} \right)\)上单调递减,在\(\left( {\frac{4}{3},3} \right]\)上单调递增,所以,\(f{\left( x \right)_{极大值}} = f\left( 0 \right) = 0\), \(f{\left( x \right)_{极小值}} = f\left( {\frac{4}{3}} \right) = - \frac{{32}}{{27}}\),

又因为 \(f\left( { - 1} \right) = - 3\), \(f\left( 3 \right) = 9\) ,所以,

由(1)知 \(x = 0\) 是\(f\left ( {x} \right )\)的极大值点, \(x = \frac{4}{3}\) 是\(f\left( x \right)\)的极小值点,

所以 \(f\left( x \right)\)极大值\( = f\left( 0 \right) = 0\), \(f\left( x \right)\)极小值\( = f\left( {\frac{4}{3}} \right) = - \frac{{32}}{{27}}\) ,

又 \(f\left( { - 1} \right) = - 3\) , \(f\left( 3 \right) = 9\) , \(f{\left( x \right)_{\max }} = 9\) ,\(f{\left( x \right)_{\min }} = - 3\) .


第302题



参考答案:\(f'\left ( {x} \right )=3\left ( {{{x}^{2}}-1} \right )\)

\(x \in \left( { - 2, - 1} \right)\) , \(f'\left ( {x} \right )>0\) , \(f\left( x \right)\) 单调递增;

\(x \in \left( { - 1,1} \right)\) , \(f'\left ( {x} \right )<0\) , \(f\left( x \right)\) 单调递减;

\(x \in \left( {1, + \infty } \right)\), \(f'\left ( {x} \right )>0\) , \(f\left( x \right)\) 单调递增,

所以函数的极大值为 \(f\left( { - 1} \right) = 6\) ,极小值为 \(f\left( 1 \right) = 2\) .


第303题



参考答案:\(f'\left ( {x} \right )=3\left ( {{{x}^{2}}-a} \right )\)

①若 \(0 < a < 1\) ,\(x \in \left( { - 2, - \sqrt a } \right)\), \(f'\left ( {x} \right )>0\) , \(f\left( x \right)\) 单调递增

\(x \in \left( { - \sqrt a ,\sqrt a } \right)\),\(f\prime \left( x \right) < 0\),\(f\left( x \right)\) 单调递减,\(x \in \left( {\sqrt a ,1} \right)\),\(f'\left ( {x} \right )>0\), \(f\left( x \right)\) 单调递增

若 \(f{\left( x \right)_{\max }} = f\left( { - \sqrt a } \right) = 2a\sqrt a + 4 = 20\) ,得 \(a = 4\) (舍去)

若 \(f{\left( x \right)_{\max }} = f\left( 1 \right) = 5 - 3a = 20\) ,得 \(a = - 5\) (舍去)

②若 \(1 \leqslant a < 4\), \(x \in \left( { - 2, - \sqrt a } \right)\) ,\(f'\left ( {x} \right )>0\), \(f\left( x \right)\) 单调递增

\(x \in \left( { - \sqrt a ,1} \right)\),\(f\prime \left( x \right) < 0\),\(f\left( x \right)\) 单调递减

若 \(f{\left( x \right)_{\max }} = f\left( { - \sqrt a } \right) = 2a\sqrt a + 4 = 20\) ,得 \(a = 4\) (舍去)

③若 \(a \geqslant 4\) ,\(x \in \left( { - 2,1} \right)\),\(f'\left ( {x} \right )<0\) ,\(f\left( x \right)\) 单调递减

若 \(f{\left( x \right)_{\max }} = f\left( { - 2} \right) = 6a - 4 = 20\) ,得 \(a = 4\) (满足)

综上所述: \(a = 4\)


第304题



参考答案:\( \because \mathrm{f}\mathrm{\text{'}}\left(x\right)={e}^{x}-a\mathrm{cos}x\)\(\because f'(x) = {{\rm{e}}^x} - a\cos x\) , \(\therefore f'(0) = 1 - a\) ,又 \(f(0) = 1\) ,所以 \(y = f(x)\) 在 \((0,f(0))\) 处的切线方程为 \(y = (1 - a)x + 1\),因为其也与曲线 \(y = 2x - {x^2}\) 相切,则联立 \(\left\{ {\begin{array}{*{20}{c}}
{y = \left( {1 - a} \right)x + 1} \\
{y = 2x - {x^2}}
\end{array}} \right.\) ,得 \({x^2} - (a + 1)x + 1 = 0\) ,由 \(\Delta = {(a + 1)^2} - 4 = 0\) 及 \(a > 0\) ,解得 \(a = 1\) .


第305题



参考答案:由(1)得\(f\left ( {x} \right )={e}^{x}-\mathrm{sin}x\),\(f'\left ( {x} \right )={e}^{x}-\mathrm{cos}x\),

令 \(g(x) = f'(x)\),则 \(g'\left ( {x} \right )={e}^{x}+\mathrm{sin}x\) 在 \(\left( { - \frac{\pi }{2},0} \right)\)上递增,

又\(g'\left ( {-\frac {\pi } {2}} \right )=\frac {1} {{e}^{\frac {\pi } {2}}}-1<0\) , \(g'(0) = 1 > 0\).

∴存在 \({x_0} \in \left( { - \frac{\pi }{2},0} \right)\) ,使得 \(g'\left( {{x_0}} \right) = 0\) ,即 \( {e}^{{x}_{0}}+\mathrm{sin}{x}_{0}=0\) ,

当 \(x \in \left( { - \frac{\pi }{2},{x_0}} \right)\) 时, \(g'(x) < 0\) , \(g(x)\) 递减:当 \(x \in \left( {{x_0},0} \right)\) 时, \(g'(x) > 0\) , \(g(x)\) 递增,

∵ \(g(0) = 0\) , \(\therefore g\left( {{x_0}} \right) < g(0) = 0\) ,∴当 \(x \in \left( {{x_0},0} \right)\) 时, \(g(x) < 0\) , 即 \(f'\left ( {x} \right )<0\) .

又 \(f'(0) = 0\) ,当 \(x \in (0, + \infty )\) 时,\(f'\left ( {x} \right )>0\), \(\therefore x = 0\) 是 \(f\left ( {x} \right )\) 在 \(\left( {{x_0}, + \infty } \right)\) 内的极小值点.

∵当 \(x \in \left( { - \frac{\pi }{2},{x_0}} \right)\) 时, \(g(x)\) 递减,即 \({f^\prime }(x)\) 递减, \(\therefore f(x)\) 在 \(\left( { - \frac{\pi }{2},{x_0}} \right)\) 内没有极小值点.

\(\therefore f(x)\) 在 \(\left( { - \frac{\pi }{2}, + \infty } \right)\) 的极小值是 \(f(0) = 1\) .


第306题



参考答案:\({f}^{'\left ( {x} \right )}={e}^{x}\left ( {x-2} \right )-\frac {1} {x}+\frac {2} {{x}^{2}}\) , \(f'\left ( {1} \right )=1-e\), \(f\left ( {1} \right )=-2e-2\),

∴曲线 \(y = f(x)\) 在点 \((1,f(1))\) 处的切线方程为\(y-\left ( {-2e-2} \right )=\left ( {1-e} \right )\left ( {x-1} \right )\),

即\(\left ( {e-1} \right )x+y+e+3=0\);


第307题



参考答案:\(f'\left ( {x} \right )=\left ( {x-2} \right )\left ( {{e}^{x}-\frac {1} {{x}^{2}}} \right )\),令 \(f'(x) = 0\) ,得 \(x = 2\) 或\({e}^{x}-\frac {1} {{x}^{2}}=0\),

设 \(g\left ( {x} \right )={e}^{x}-\frac {1} {{x}^{2}}\),∵ \(g(x)\) 在 \((0,\;\; + \infty )\) 上单调递增,且 \(g\left ( {1} \right )=e-1>0\),\(g\left ( {\frac {1} {2}} \right )=\sqrt {e}-4<0\) ,

∴存在唯一 \({x_0} \in \left( {\frac{1}{2},\;\;1} \right)\) ,使得\(g\left ( {{x}_{0}} \right )={e}^{{x}_{0}}-\frac {1} {{x}^{2}_{0}}=0\),即\( {e}^{{x}_{0}}=\frac{1}{{x}_{0}^{2}}\),

故 \(x \in (0,{x_0})\) 时,\(x-2<0\),\( {e}^{x}-\frac{1}{{x}^{2}}<0\), \(f'\left ( {x} \right )>0\),\(f\left ( {x} \right )\)单调递增,

\(x \in ({x_0},2)\) 时,\(x-2<0\),\( {e}^{x}-\frac{1}{{x}^{2}}>0\) ,\(f'\left ( {x} \right )<0\),\(f\left ( {x} \right )\)单调递减,

\(x \in (2, + \infty )\) 时,\(x-2>0\), \({{\rm{e}}^x} - \frac{1}{{{x^2}}} > 0\),\(f'\left ( {x} \right )>0\),\(f\left ( {x} \right )\)单调递增,

∴\(x = {x_0}\) 是函数f (x)的唯一极大值点;

∵\({x_0} \in \left( {\frac{1}{2},\;\;1} \right)\) ,∴ \(f\left ( {{x}_{0}} \right )>f\left ( {1} \right )=-2e-2\) ;又\( {e}^{{x}_{0}}=\frac{1}{{x}_{0}^{2}}\) ,即 \( \mathrm{ln}{x}_{0}=-\frac{{x}_{0}}{2}\),

∴\(f\left ( {{x}_{0}} \right )={e}^{{x}_{0}}\left ( {{x}_{0}-3} \right )-\left ( {\mathrm{ln}{x}_{0}+\frac {2} {{x}_{0}}} \right )=\frac {{x}_{0}-3} {{x}^{2}_{0}}+\frac {{x}_{0}} {2}-\frac {2} {{x}_{0}}=\frac {{x}_{0}} {2}-\frac {1} {{x}_{0}}-\frac {3} {{x}^{2}_{0}}\) ,

令 \(h(x) = \frac{x}{2} - \frac{1}{x} - \frac{3}{{{x^2}}}\) , \(x \in \left( {\frac{1}{2},\;\;1} \right)\) ,则 \(h'(x) = \frac{1}{2} + \frac{1}{{x_{}^2}} + \frac{6}{{x_{}^3}} > 0\) ,故 \(h(x)\) 在 \(\left( {\frac{1}{2},\;\;1} \right)\) 上单调递增,

故 \(f({x_0}) < h(1) = \frac{1}{2} - 1 - 3 = - \frac{7}{2}\) ,

综上所述:\(-2e-2<f\left ( {{x}_{0}} \right )<-\frac {7} {2}\) .


第308题



参考答案:由 \( {f}^{\text{'}}\left(x\right)={e}^{x}\left(\mathit{sin}x+\mathit{cos}x\right)\le 0\),\(x\in \left [ {-\pi ,\pi } \right ]\) ,得 \( f\left(x\right)\) 的单调减区间是 \(\left [ {-\pi ,-\frac {\pi } {4}} \right ]\),\(\left [ {\frac {3\pi } {4},\pi } \right ]\),

同理, \( f\left(x\right)\) 的单调增区间是 \(\left [ {-\frac {\pi } {4},\frac {3\pi } {4}} \right ]\) .

故\( f\left(x\right)\)的极小值为 \( f\left(-\frac{\pi }{4}\right)=-\frac{\sqrt{2}}{2{e}^{\frac{\pi }{4}}}\) ,极大值为 \( f\left(\frac{3\pi }{4}\right)=\frac{\sqrt{2}}{2}{e}^{\frac{3\pi }{4}}\)


第309题



参考答案:见解析


解析:

由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \) ,则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).


设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\) ,则\( g\left(x\right)\)在 \(\left [ {0,\pi } \right ]\) 上单调递增,


故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​ 在 \(\left [ {0,\pi } \right ]\) 上恒成立.


方法一:(含参讨论)


设\(h\left ( {x} \right )=g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​,


则 \( h\left(0\right)=1>0\) , \( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),解得 \( a\ge \frac{{e}^{\pi }}{2\pi }\).


\(h'\left ( {x} \right )=2\left ( {{e}^{x}\cos {x+a}} \right )\) , \({h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\) , \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\).


①当  \( a\ge {e}^{\pi }\) 时,\(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\) ​,


故,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时 , \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\geq 0\)  , \({h}^{'}\left ( {x} \right )\) 递增;


当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\leq 0\),\({h}^{'}\left ( {x} \right )\)递减;


此时,\(h'\left ( {x} \right )\geq \text{min}\left \{ {h'\left ( {0} \right ),h'\left ( {\pi } \right )} \right \} =h'\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\geq 0\)​ ​, \(h\left( x \right) = g'\left( x \right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,故\(h\left ( {x} \right )={g}^{'}\left ( {x} \right )\ge {g}^{'}\left ( {0} \right )=1>0\) ,符合条件.


②当 \( \frac{{e}^{\pi }}{2\pi }\le a<{e}^{\pi }\) 时,同①,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递增;当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递减;


∵ \({h}^{'}\left ( {\frac {\pi } {4}} \right )>{h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\), \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )<0\) ,


∴由连续函数零点存在性定理及单调性知, \(\exists {x}_{0}\in \left ( {\frac {\pi } {4},\pi } \right )\), \({h}^{'}\left ( {{x}_{0}} \right )=0\).


于是,当 \(x\in \left . {[0,{x}_{0}} \right )\) 时,\({h}^{'}\left ( {x} \right )>0\),\(h\left( x \right) = g'\left( x \right)\) 单调递增;


当 \(x\in {(x}_{0},\pi ]\) 时, \({h}^{'}\left ( {x} \right )<0\), \(h\left( x \right) = g'\left( x \right)\) 单调递减.


∵\( h\left(0\right)=1>0\),\( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),\(\therefore g'\left ( {x} \right )=h\left ( {x} \right )\geq \text{min}\left \{ {h\left ( {0} \right ),h\left ( {\pi } \right )} \right \} \geq 0\)​ ,符合条件.


综上,实数 \( a\) 的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\).


方法二:(参变分离)


由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \),


则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).


设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\),则 \( g\left(x\right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,


故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​在 \(\left [ {0,\pi } \right ]\) 上恒成立.


\({\because g}^{'}\left ( {0} \right )=1>0\),\(\therefore g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​​在 \(\left [ {0,\pi } \right ]\) 上恒成立


\( \iff -2a\le \frac{{e}^{x}\left(\mathit{sin}x+\mathit{cos}x\right)}{x}\)\(⇔-2a\leq \frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},\forall x\in (0,\pi ]\)​.


设 \(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\)​​,​则\(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x}-\sin {x-\cos {x}}} \right )} {{x}^{2}},x\in (0,\pi ]\)​ ​​.


设\(φ\left ( {x} \right )=2x-\tan {x}-1,x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\)​ ​​,


则 \(φ'\left ( {x} \right )=2x-\frac {1} {\cos^{2} {x}},x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\)​​.


由 \({φ}^{'}\left ( {x} \right )>0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在\(\left ( {0,\frac {\pi } {4}} \right )\),\((\frac {3\pi } {4},\pi ]\) 上单调递增;


由 \({φ}^{'}\left ( {x} \right )<0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在 \(\left ( {\frac {\pi } {4},\frac {\pi } {2}} \right )\),\((\frac {\pi } {2},\frac {3\pi } {4}]\) 上单调递减.


故 \(x\in \left ( {0,\frac {\pi } {2}} \right )\) 时 \(φ\left ( {x} \right )\le φ\left ( {\frac {\pi } {4}} \right )=\frac {\pi } {2}-2<0\); \(x\in (\frac {\pi } {2},\pi ]\) 时 \(φ\left ( {x} \right )\ge φ\left ( {\frac {3\pi } {4}} \right )=\frac {3\pi } {2}>0\).


从而,\(φ\left ( {x} \right )\cos {x}=2x\cos {x}-\sin {x}-\cos {x<0,x\in \left ( {0,\frac {\pi } {2}} \right )}\cup (\frac {\pi } {2},\pi ]\)​​,​


又 \( x=\frac{\pi }{2}\) 时, \(2x\cos {x}-\sin {x}-\cos {x=-1<0}\),故 ​​​\(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x-\sin {x-\cos {x}}}} \right )} {{x}^{2}}<0,x\in (0,\pi ]\)​,​


​\(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\)​ 单调递减,\(h\left ( {x} \right )_{\text{min}}=h\left ( {\pi } \right )=-\frac {{e}^{\pi }} {\pi },x\in (0,\pi ]\)​ ​​.


于是, \( -2a\le -\frac{{e}^{\pi }}{\pi }\iff a\ge \frac{{e}^{\pi }}{2\pi }\).


综上,实数\( a\)的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\)


第310题



参考答案:当 \( m=1\) 时 \(h\left ( {x} \right )=x{e}^{x}-x{,h}^{'}\left ( {x} \right )=\left ( {x+1} \right ){e}^{x}-1\)

设 \( \mu \left(x\right)={h}^{\text{'}}\left(x\right)=\left(x+1\right){e}^{x}-1\),则 \( {\mu }^{\text{'}}\left(x\right)=\left(x+2\right){e}^{x}\ge 0\Rightarrow x\ge -2\)

\( \begin{array}{c}{\mu }^{\text{'}}\left(x\right)=\left(x+2\right){e}^{x}<0\Rightarrow x<-2\end{array}\) \( \therefore \mu \left(x\right)\) 即 \( {h}^{\text{'}}\left(x\right)\) 在 \(\left ( {-\infty ,-2} \right )\) 递减,在 \(\left . {[-2,+\infty } \right )\) 递增,

当 \(x\in \left ( {-\infty ,-2} \right ),{h}^{'}\left ( {x} \right )=\left ( {x+1} \right )\cdot {e}^{x}-1<0\) ,当 \(x\in [\left . {-2,0} \right ),{h}^{'}\left ( {x} \right )<{h}^{'}\left ( {0} \right )=0\)

而当 \(x\in \left . {[0,+\infty } \right ),{h}^{'}\left ( {x} \right )\ge {h}^{'}\left ( {0} \right )=0\) 所以当 \(x\in \left ( {-\infty ,0} \right ),{h}^{'}\left ( {x} \right )<0,h\left ( {x} \right )\) 递减;

\(x\in \left . {[0,+\infty } \right ),{h}^{'}\left ( {x} \right )\ge 0,h\left ( {x} \right )\) 递增.故函数增区间为 \(\left . {[0,+\infty } \right )\) ,减区间为 \(\left ( {-\infty ,0} \right )\)


第311题



参考答案:\( m+1\le {e}^{x}-\frac{\text{ln}x}{x}-\frac{1}{x}=\frac{x{e}^{x}-\text{ln}x-1}{x}\) , \(x\in \left ( {0,+\infty } \right )\)

令 \(f\left ( {x} \right )=\frac {x{e}^{x}-\text{ln}x-1} {x},{f}^{'}\left ( {x} \right )=\frac {{x}^{2}{e}^{x}+\text{ln}x} {{x}^{2}},x\in \left ( {0,+\infty } \right )\)

令\(p\left ( {x} \right )={x}^{2}{e}^{x}+\text{ln}x,{p}^{'}\left ( {x} \right )={e}^{x}\left ( {{x}^{2}+2x} \right )+\frac {1} {x}>0,x\in \left ( {0,+\infty } \right )\)



\( \therefore p\left(x\right)\) 在\(\left ( {0,+\infty } \right )\)递增,而 \(p\left ( {\frac {1} {e}} \right )={e}^{\frac {1} {e}-2}-1<0,p\left ( {1} \right )>0\),

\(\therefore \exists {x}_{1}\in \left ( {\frac {1} {e},1} \right )\) ,使 \( p\left({x}_{1}\right)=0\) ,即 \( {x}_{1}^{2}{e}^{{x}_{1}}+\text{ln}{x}_{1}=0\left(*\right)\)

当 \(x\in \left ( {0{,x}_{1}} \right )\) 时, \({f}^{'}\left ( {x} \right )<0,f\left ( {x} \right )\)在 \(\left ( {0{,x}_{1}} \right )\) 递减,当 \(x\in \left ( {{x}_{1},+\infty } \right )\) 时, \({f}^{'}\left ( {x} \right )>0,f\left ( {x} \right )\) 在\(\left ( {{x}_{1},+\infty } \right )\)递增

\( \begin{array}{c}\therefore f(x{)}_{\text{min}}=f\left({x}_{1}\right)={e}^{{x}_{1}}-\frac{\text{ln}{x}_{1}}{{x}_{1}}-\frac{1}{{x}_{1}}\end{array}\)

因为 \( {x}_{1}^{2}{e}^{{x}_{1}}+\text{ln}{x}_{1}=0\left(*\right)\) 可变形为 \( {x}_{1}{e}^{{x}_{1}}=-\frac{1}{{x}_{1}}\text{ln}{x}_{1}=\frac{1}{{x}_{1}}\text{ln}\frac{1}{{x}_{1}}={e}^{\text{ln}\frac{1}{{x}_{1}}}\text{ln}\frac{1}{{x}_{1}}\left(\text{**}\right)\)

又 \(\because y=x{e}^{x},{y}^{,}=\left ( {x+1} \right ){e}^{x}>0,\therefore y=x{e}^{x}\) 在\(\left ( {0,+\infty } \right )\)递增,

由(**)可得 \( {x}_{1}=\text{ln}\frac{1}{{x}_{1}}=-\text{ln}{x}_{1},{e}^{{x}_{1}}=\frac{1}{{x}_{1}}\)

\(\therefore f(x{)}_{\text{min}}=f\left ( {{x}_{1}} \right )={e}^{{x}_{1}}-\frac {\text{ln}{x}_{1}} {{x}_{1}}-\frac {1} {{x}_{1}}=\frac {1} {{x}_{1}}+1-\frac {1} {{x}_{1}}=1,\therefore m+1\le 1,\therefore m\le 0\)

故\( m\)取值范围为 \((-\infty ,0]\)

【点睛】

本题主要考查了利用导数分析函数的单调性,同时也考查了利用导数解决恒成立的问题,需要参变分离,设函数后再求导分析,根据零点存在性定理确定极值点的区间,最后将极值点满足的关系式代入原函数化简求最值.属于难题


第312题



参考答案:由题意,当 \( a=1\) 时, \( f\left(x\right)=\frac{1}{2}{x}^{2}+x-{e}^{x}\),则 \( {f}^{\text{'}}\left(x\right)=x+1-{e}^{x}\),

令 \( g\left(x\right)=x+1-{e}^{x}\),则 \({g}^{'}\left ( {x} \right )=1-{e}^{x}\),令 \({g}^{'}\left ( {x} \right )=0\)可得 \( x=0\),列表如下:



所以, \({f}^{'}\left ( {x} \right )=g\left ( {x} \right )\le g\left ( {0} \right )=0\) ,且 \({f}^{'}\left ( {x} \right )\) 不恒为零,

所以,函数\(f\left ( {x} \right )\)在\( \mathit{R}\)上单调递减,且 \( f\left(0\right)=-1\),

由 \( f\left(\mathrm{ln}x\right)>-1=f\left(0\right)\) 可得 \( \mathrm{ln}x<0\),解得 \( 0<x<1\).

因此,当 \( a=1\) 时,不等式 \( f\left(\mathrm{ln}x\right)>-1\) 的解集为\(\left ( {0,1} \right )\).


第313题



参考答案:证明:当\( a>1\)时,\( f\left(x\right)=\frac{1}{2}a{x}^{2}+x-{e}^{x}\) ,则 \({f}^{'}\left ( {x} \right )=ax+1-{e}^{x}\),

令 \(h\left ( {x} \right )={f}^{'}\left ( {x} \right )=ax+1-{e}^{x}\),其中 \( x>0\),则 \({h}^{'}\left ( {x} \right )=a-{e}^{x}=0\),可得 \( x=\mathrm{ln}a>0\),

当 \(0 < x < \ln a\) 时,\({h}^{'}\left ( {x} \right )>0\),此时函数 \( h\left(x\right)\) 单调递增,

当 \(x > \ln a\) 时,\({h}^{'}\left ( {x} \right )<0\),此时函数 \( h\left(x\right)\) 单调递减,

所以,\(h\left ( {x} \right )_{\text{max}}=h\left ( {\ln {a}} \right )=a\ln {a+1-a}\),

令 \( p\left(a\right)=a\mathrm{ln}a+1-a\),其中 \( a>1\) ,则 \({p}^{'}\left ( {a} \right )=\mathrm{ln}a>0\),

所以,函数 \( p\left(a\right)\) 在 \(\left ( {1,+\infty } \right )\) 上单调递增,当 \( a>1\) 时, \( p\left(a\right)>p\left(1\right)=0\),

所以, \({f}^{'}\left ( {x} \right )_{max}={f}^{'}\left ( {\ln {a}} \right )=a\ln {a}+1-a>0\) 且 \({f}^{'}\left ( {0} \right )=0\),

由(1)知 \( {e}^{x}\ge x+1>x\) ,则当 \( x>1\) 时,\( {e}^{x}={e}^{\frac{x}{2}}\cdot {e}^{\frac{x}{2}}>\frac{{x}^{2}}{4}\) , \({f}^{'}\left ( {x} \right )<ax+x-\frac {{x}^{2}} {4}\),

当 \( x>4\left(a+1\right)\) 时, \({f}^{'}\left ( {x} \right )<0\) ,由 \( {e}^{x}>x\) ,得 \( x>\mathrm{ln}x\), \( \therefore 4\left(a+1\right)>a>\mathrm{ln}a\),

所以\(f\left ( {x} \right )\)存在极大值点\(m\in \left ( {\mathrm{ln}a,+\infty } \right )\),

\(\because {f}^{'}\left ( {m} \right )=0\) ,故 \( am={e}^{m}-1\),

\( \therefore 2f\left(m\right)=m\left({e}^{m}-1\right)+2m-2{e}^{m}=\left(m-2\right){e}^{m}+m\).

所以,要证 \( f\left(m\right)>\frac{m-3}{2}\) ,只要证 \( \left(m-2\right){e}^{m}+m>m-3\) ,即证 \( \left(m-2\right){e}^{m}+3>0\left(m>0\right)\).

令 \(φ\left ( {x} \right )=\left ( {x-2} \right ){e}^{x}+3\left ( {x>0} \right )\),则 \({φ}^{'}\left ( {x} \right )=\left ( {x-1} \right ){e}^{x}\),由 \({φ}^{'}\left ( {x} \right )=0\),得 \( x=1\),

当 \( 0<x<1\) 时, \({φ}^{'}\left ( {x} \right )<0\),函数 \( \phi \left(x\right)\) 单调递减,

当 \( x>1\)时, \({φ}^{'}\left ( {x} \right )>0\),函数 \(φ\left ( {x} \right )\) 单调递增,所以, \(φ\left ( {x} \right )\ge φ\left ( {1} \right )=3-e>0\),

综上, \( f\left(m\right)>\frac{m-3}{2}\) 成立.




第316题


A.\(\sqrt {2}f\left ( {\frac {\pi } {4}} \right )>\sqrt {3}f\left ( {\frac {\pi } {3}} \right )\)

B.\(\sin {1}f\left ( {1} \right )>\frac {1} {2}f\left ( {\frac {\pi } {6}} \right )\)

C.\(f\left ( {\frac {\pi } {6}} \right )>\sqrt {2}f\left ( {\frac {\pi } {4}} \right )\)

D.\(f\left ( {\frac {\pi } {6}} \right )>\sqrt {3}f\left ( {\frac {\pi } {3}} \right )\)


参考答案:B






进入题库练习及模拟考试