“微信扫一扫”进入题库练习及模拟考试
设
若对 \(\forall {x}_{1},{x}_{2}\in \left [ {0,\pi } \right ]\) , \( {x}_{1}\ne {x}_{2}\) ,都有 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 成立,求实数\(a\)的取值范围.
参考答案:见解析
解析:
由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \) ,则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).
设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\) ,则\( g\left(x\right)\)在 \(\left [ {0,\pi } \right ]\) 上单调递增,
故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\) 在 \(\left [ {0,\pi } \right ]\) 上恒成立.
方法一:(含参讨论)
设\(h\left ( {x} \right )=g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\) ,
则 \( h\left(0\right)=1>0\) , \( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),解得 \( a\ge \frac{{e}^{\pi }}{2\pi }\).
\(h'\left ( {x} \right )=2\left ( {{e}^{x}\cos {x+a}} \right )\) , \({h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\) , \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\).
①当 \( a\ge {e}^{\pi }\) 时,\(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\) ,
故,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时 , \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\geq 0\) , \({h}^{'}\left ( {x} \right )\) 递增;
当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\leq 0\),\({h}^{'}\left ( {x} \right )\)递减;
此时,\(h'\left ( {x} \right )\geq \text{min}\left \{ {h'\left ( {0} \right ),h'\left ( {\pi } \right )} \right \} =h'\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\geq 0\) , \(h\left( x \right) = g'\left( x \right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,故\(h\left ( {x} \right )={g}^{'}\left ( {x} \right )\ge {g}^{'}\left ( {0} \right )=1>0\) ,符合条件.
②当 \( \frac{{e}^{\pi }}{2\pi }\le a<{e}^{\pi }\) 时,同①,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递增;当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递减;
∵ \({h}^{'}\left ( {\frac {\pi } {4}} \right )>{h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\), \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )<0\) ,
∴由连续函数零点存在性定理及单调性知, \(\exists {x}_{0}\in \left ( {\frac {\pi } {4},\pi } \right )\), \({h}^{'}\left ( {{x}_{0}} \right )=0\).
于是,当 \(x\in \left . {[0,{x}_{0}} \right )\) 时,\({h}^{'}\left ( {x} \right )>0\),\(h\left( x \right) = g'\left( x \right)\) 单调递增;
当 \(x\in {(x}_{0},\pi ]\) 时, \({h}^{'}\left ( {x} \right )<0\), \(h\left( x \right) = g'\left( x \right)\) 单调递减.
∵\( h\left(0\right)=1>0\),\( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),\(\therefore g'\left ( {x} \right )=h\left ( {x} \right )\geq \text{min}\left \{ {h\left ( {0} \right ),h\left ( {\pi } \right )} \right \} \geq 0\) ,符合条件.
综上,实数 \( a\) 的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\).
方法二:(参变分离)
由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \),
则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).
设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\),则 \( g\left(x\right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,
故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\) 在 \(\left [ {0,\pi } \right ]\) 上恒成立.
\({\because g}^{'}\left ( {0} \right )=1>0\),\(\therefore g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)在 \(\left [ {0,\pi } \right ]\) 上恒成立
\( \iff -2a\le \frac{{e}^{x}\left(\mathit{sin}x+\mathit{cos}x\right)}{x}\)\(⇔-2a\leq \frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},\forall x\in (0,\pi ]\).
设 \(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\),则\(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x}-\sin {x-\cos {x}}} \right )} {{x}^{2}},x\in (0,\pi ]\) .
设\(φ\left ( {x} \right )=2x-\tan {x}-1,x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\) ,
则 \(φ'\left ( {x} \right )=2x-\frac {1} {\cos^{2} {x}},x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\).
由 \({φ}^{'}\left ( {x} \right )>0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在\(\left ( {0,\frac {\pi } {4}} \right )\),\((\frac {3\pi } {4},\pi ]\) 上单调递增;
由 \({φ}^{'}\left ( {x} \right )<0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在 \(\left ( {\frac {\pi } {4},\frac {\pi } {2}} \right )\),\((\frac {\pi } {2},\frac {3\pi } {4}]\) 上单调递减.
故 \(x\in \left ( {0,\frac {\pi } {2}} \right )\) 时 \(φ\left ( {x} \right )\le φ\left ( {\frac {\pi } {4}} \right )=\frac {\pi } {2}-2<0\); \(x\in (\frac {\pi } {2},\pi ]\) 时 \(φ\left ( {x} \right )\ge φ\left ( {\frac {3\pi } {4}} \right )=\frac {3\pi } {2}>0\).
从而,\(φ\left ( {x} \right )\cos {x}=2x\cos {x}-\sin {x}-\cos {x<0,x\in \left ( {0,\frac {\pi } {2}} \right )}\cup (\frac {\pi } {2},\pi ]\),
又 \( x=\frac{\pi }{2}\) 时, \(2x\cos {x}-\sin {x}-\cos {x=-1<0}\),故 \(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x-\sin {x-\cos {x}}}} \right )} {{x}^{2}}<0,x\in (0,\pi ]\),
\(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\) 单调递减,\(h\left ( {x} \right )_{\text{min}}=h\left ( {\pi } \right )=-\frac {{e}^{\pi }} {\pi },x\in (0,\pi ]\) .
于是, \( -2a\le -\frac{{e}^{\pi }}{\pi }\iff a\ge \frac{{e}^{\pi }}{2\pi }\).
综上,实数\( a\)的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\)