“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


\( f\left(x\right)={e}^{x}\mathit{sin}x\).


若对 \(\forall {x}_{1},{x}_{2}\in \left [ {0,\pi } \right ]\) , \( {x}_{1}\ne {x}_{2}\) ,都有 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 成立,求实数\(a\)的取值范围.



知识点:第五章 一元函数的导数及其应用


参考答案:见解析


解析:

由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \) ,则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).


设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\) ,则\( g\left(x\right)\)在 \(\left [ {0,\pi } \right ]\) 上单调递增,


故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​ 在 \(\left [ {0,\pi } \right ]\) 上恒成立.


方法一:(含参讨论)


设\(h\left ( {x} \right )=g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​,


则 \( h\left(0\right)=1>0\) , \( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),解得 \( a\ge \frac{{e}^{\pi }}{2\pi }\).


\(h'\left ( {x} \right )=2\left ( {{e}^{x}\cos {x+a}} \right )\) , \({h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\) , \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\).


①当  \( a\ge {e}^{\pi }\) 时,\(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\) ​,


故,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时 , \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\geq 0\)  , \({h}^{'}\left ( {x} \right )\) 递增;


当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \(\left [ {h'\left ( {x} \right )} \right ]'={2e}^{x}\left ( {\cos {x-}\sin {x}} \right )\leq 0\),\({h}^{'}\left ( {x} \right )\)递减;


此时,\(h'\left ( {x} \right )\geq \text{min}\left \{ {h'\left ( {0} \right ),h'\left ( {\pi } \right )} \right \} =h'\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )\geq 0\)​ ​, \(h\left( x \right) = g'\left( x \right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,故\(h\left ( {x} \right )={g}^{'}\left ( {x} \right )\ge {g}^{'}\left ( {0} \right )=1>0\) ,符合条件.


②当 \( \frac{{e}^{\pi }}{2\pi }\le a<{e}^{\pi }\) 时,同①,当 \(x\in \left [ {0,\frac {\pi } {4}} \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递增;当 \(x\in \left [ {\frac {\pi } {4},\pi } \right ]\) 时, \({h}^{'}\left ( {x} \right )\) 递减;


∵ \({h}^{'}\left ( {\frac {\pi } {4}} \right )>{h}^{'}\left ( {0} \right )=2\left ( {a+1} \right )>0\), \({h}^{'}\left ( {\pi } \right )=2\left ( {a-{e}^{\pi }} \right )<0\) ,


∴由连续函数零点存在性定理及单调性知, \(\exists {x}_{0}\in \left ( {\frac {\pi } {4},\pi } \right )\), \({h}^{'}\left ( {{x}_{0}} \right )=0\).


于是,当 \(x\in \left . {[0,{x}_{0}} \right )\) 时,\({h}^{'}\left ( {x} \right )>0\),\(h\left( x \right) = g'\left( x \right)\) 单调递增;


当 \(x\in {(x}_{0},\pi ]\) 时, \({h}^{'}\left ( {x} \right )<0\), \(h\left( x \right) = g'\left( x \right)\) 单调递减.


∵\( h\left(0\right)=1>0\),\( h\left(\pi \right)=-{e}^{\pi }+2a\pi \ge 0\),\(\therefore g'\left ( {x} \right )=h\left ( {x} \right )\geq \text{min}\left \{ {h\left ( {0} \right ),h\left ( {\pi } \right )} \right \} \geq 0\)​ ,符合条件.


综上,实数 \( a\) 的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\).


方法二:(参变分离)


由对称性,不妨设 \( 0\le {x}_{1}<{x}_{2}\le \pi \),


则 \( \frac{f\left({x}_{1}\right)-f\left({x}_{2}\right)}{{x}_{1}^{2}-{x}_{2}^{2}}+a>0\) 即为 \( f\left({x}_{2}\right)+a{x}_{2}^{2}>f\left({x}_{1}\right)+a{x}_{1}^{2}\).


设 \( g\left(x\right)=f\left(x\right)+a{x}^{2}\),则 \( g\left(x\right)\) 在 \(\left [ {0,\pi } \right ]\) 上单调递增,


故\(g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​ ​在 \(\left [ {0,\pi } \right ]\) 上恒成立.


\({\because g}^{'}\left ( {0} \right )=1>0\),\(\therefore g'\left ( {x} \right )={e}^{x}\left ( {\sin {x+\cos {x}}} \right )+2ax\geq 0\)​​在 \(\left [ {0,\pi } \right ]\) 上恒成立


\( \iff -2a\le \frac{{e}^{x}\left(\mathit{sin}x+\mathit{cos}x\right)}{x}\)\(⇔-2a\leq \frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},\forall x\in (0,\pi ]\)​.


设 \(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\)​​,​则\(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x}-\sin {x-\cos {x}}} \right )} {{x}^{2}},x\in (0,\pi ]\)​ ​​.


设\(φ\left ( {x} \right )=2x-\tan {x}-1,x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\)​ ​​,


则 \(φ'\left ( {x} \right )=2x-\frac {1} {\cos^{2} {x}},x\in (0,\frac {\pi } {2})\cup (\frac {\pi } {2},\pi ]\)​​.


由 \({φ}^{'}\left ( {x} \right )>0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在\(\left ( {0,\frac {\pi } {4}} \right )\),\((\frac {3\pi } {4},\pi ]\) 上单调递增;


由 \({φ}^{'}\left ( {x} \right )<0\),\(x\in \left ( {0,\frac {\pi } {2}} \right )\cup (\frac {\pi } {2},\pi ]\),得 \(φ\left ( {x} \right )\) 在 \(\left ( {\frac {\pi } {4},\frac {\pi } {2}} \right )\),\((\frac {\pi } {2},\frac {3\pi } {4}]\) 上单调递减.


故 \(x\in \left ( {0,\frac {\pi } {2}} \right )\) 时 \(φ\left ( {x} \right )\le φ\left ( {\frac {\pi } {4}} \right )=\frac {\pi } {2}-2<0\); \(x\in (\frac {\pi } {2},\pi ]\) 时 \(φ\left ( {x} \right )\ge φ\left ( {\frac {3\pi } {4}} \right )=\frac {3\pi } {2}>0\).


从而,\(φ\left ( {x} \right )\cos {x}=2x\cos {x}-\sin {x}-\cos {x<0,x\in \left ( {0,\frac {\pi } {2}} \right )}\cup (\frac {\pi } {2},\pi ]\)​​,​


又 \( x=\frac{\pi }{2}\) 时, \(2x\cos {x}-\sin {x}-\cos {x=-1<0}\),故 ​​​\(h'\left ( {x} \right )=\frac {{e}^{x}\left ( {2x\cos {x-\sin {x-\cos {x}}}} \right )} {{x}^{2}}<0,x\in (0,\pi ]\)​,​


​\(h\left ( {x} \right )=\frac {{e}^{x}\left ( {\sin {x+\cos {x}}} \right )} {x},x\in (0,\pi ]\)​ 单调递减,\(h\left ( {x} \right )_{\text{min}}=h\left ( {\pi } \right )=-\frac {{e}^{\pi }} {\pi },x\in (0,\pi ]\)​ ​​.


于是, \( -2a\le -\frac{{e}^{\pi }}{\pi }\iff a\ge \frac{{e}^{\pi }}{2\pi }\).


综上,实数\( a\)的取值范围是 \(\left . {[\frac {{e}^{\pi }} {2\pi },+\infty } \right )\)

进入考试题库