“微信扫一扫”进入题库练习及模拟考试
已知函数
若
参考答案:\( m+1\le {e}^{x}-\frac{\text{ln}x}{x}-\frac{1}{x}=\frac{x{e}^{x}-\text{ln}x-1}{x}\) , \(x\in \left ( {0,+\infty } \right )\)
令 \(f\left ( {x} \right )=\frac {x{e}^{x}-\text{ln}x-1} {x},{f}^{'}\left ( {x} \right )=\frac {{x}^{2}{e}^{x}+\text{ln}x} {{x}^{2}},x\in \left ( {0,+\infty } \right )\)
令\(p\left ( {x} \right )={x}^{2}{e}^{x}+\text{ln}x,{p}^{'}\left ( {x} \right )={e}^{x}\left ( {{x}^{2}+2x} \right )+\frac {1} {x}>0,x\in \left ( {0,+\infty } \right )\)
\( \therefore p\left(x\right)\) 在\(\left ( {0,+\infty } \right )\)递增,而 \(p\left ( {\frac {1} {e}} \right )={e}^{\frac {1} {e}-2}-1<0,p\left ( {1} \right )>0\),
\(\therefore \exists {x}_{1}\in \left ( {\frac {1} {e},1} \right )\) ,使 \( p\left({x}_{1}\right)=0\) ,即 \( {x}_{1}^{2}{e}^{{x}_{1}}+\text{ln}{x}_{1}=0\left(*\right)\)
当 \(x\in \left ( {0{,x}_{1}} \right )\) 时, \({f}^{'}\left ( {x} \right )<0,f\left ( {x} \right )\)在 \(\left ( {0{,x}_{1}} \right )\) 递减,当 \(x\in \left ( {{x}_{1},+\infty } \right )\) 时, \({f}^{'}\left ( {x} \right )>0,f\left ( {x} \right )\) 在\(\left ( {{x}_{1},+\infty } \right )\)递增
\( \begin{array}{c}\therefore f(x{)}_{\text{min}}=f\left({x}_{1}\right)={e}^{{x}_{1}}-\frac{\text{ln}{x}_{1}}{{x}_{1}}-\frac{1}{{x}_{1}}\end{array}\)
因为 \( {x}_{1}^{2}{e}^{{x}_{1}}+\text{ln}{x}_{1}=0\left(*\right)\) 可变形为 \( {x}_{1}{e}^{{x}_{1}}=-\frac{1}{{x}_{1}}\text{ln}{x}_{1}=\frac{1}{{x}_{1}}\text{ln}\frac{1}{{x}_{1}}={e}^{\text{ln}\frac{1}{{x}_{1}}}\text{ln}\frac{1}{{x}_{1}}\left(\text{**}\right)\)
又 \(\because y=x{e}^{x},{y}^{,}=\left ( {x+1} \right ){e}^{x}>0,\therefore y=x{e}^{x}\) 在\(\left ( {0,+\infty } \right )\)递增,
由(**)可得 \( {x}_{1}=\text{ln}\frac{1}{{x}_{1}}=-\text{ln}{x}_{1},{e}^{{x}_{1}}=\frac{1}{{x}_{1}}\)
\(\therefore f(x{)}_{\text{min}}=f\left ( {{x}_{1}} \right )={e}^{{x}_{1}}-\frac {\text{ln}{x}_{1}} {{x}_{1}}-\frac {1} {{x}_{1}}=\frac {1} {{x}_{1}}+1-\frac {1} {{x}_{1}}=1,\therefore m+1\le 1,\therefore m\le 0\)
故\( m\)取值范围为 \((-\infty ,0]\)
【点睛】
本题主要考查了利用导数分析函数的单调性,同时也考查了利用导数解决恒成立的问题,需要参变分离,设函数后再求导分析,根据零点存在性定理确定极值点的区间,最后将极值点满足的关系式代入原函数化简求最值.属于难题