“微信扫一扫”进入题库练习及模拟考试
已知函数
求
参考答案:由(1)得\(f\left ( {x} \right )={e}^{x}-\mathrm{sin}x\),\(f'\left ( {x} \right )={e}^{x}-\mathrm{cos}x\),
令 \(g(x) = f'(x)\),则 \(g'\left ( {x} \right )={e}^{x}+\mathrm{sin}x\) 在 \(\left( { - \frac{\pi }{2},0} \right)\)上递增,
又\(g'\left ( {-\frac {\pi } {2}} \right )=\frac {1} {{e}^{\frac {\pi } {2}}}-1<0\) , \(g'(0) = 1 > 0\).
∴存在 \({x_0} \in \left( { - \frac{\pi }{2},0} \right)\) ,使得 \(g'\left( {{x_0}} \right) = 0\) ,即 \( {e}^{{x}_{0}}+\mathrm{sin}{x}_{0}=0\) ,
当 \(x \in \left( { - \frac{\pi }{2},{x_0}} \right)\) 时, \(g'(x) < 0\) , \(g(x)\) 递减:当 \(x \in \left( {{x_0},0} \right)\) 时, \(g'(x) > 0\) , \(g(x)\) 递增,
∵ \(g(0) = 0\) , \(\therefore g\left( {{x_0}} \right) < g(0) = 0\) ,∴当 \(x \in \left( {{x_0},0} \right)\) 时, \(g(x) < 0\) , 即 \(f'\left ( {x} \right )<0\) .
又 \(f'(0) = 0\) ,当 \(x \in (0, + \infty )\) 时,\(f'\left ( {x} \right )>0\), \(\therefore x = 0\) 是 \(f\left ( {x} \right )\) 在 \(\left( {{x_0}, + \infty } \right)\) 内的极小值点.
∵当 \(x \in \left( { - \frac{\pi }{2},{x_0}} \right)\) 时, \(g(x)\) 递减,即 \({f^\prime }(x)\) 递减, \(\therefore f(x)\) 在 \(\left( { - \frac{\pi }{2},{x_0}} \right)\) 内没有极小值点.
\(\therefore f(x)\) 在 \(\left( { - \frac{\pi }{2}, + \infty } \right)\) 的极小值是 \(f(0) = 1\) .