“微信扫一扫”进入题库练习及模拟考试
已知函数
证明:
参考答案:\(f'\left ( {x} \right )=\left ( {x-2} \right )\left ( {{e}^{x}-\frac {1} {{x}^{2}}} \right )\),令 \(f'(x) = 0\) ,得 \(x = 2\) 或\({e}^{x}-\frac {1} {{x}^{2}}=0\),
设 \(g\left ( {x} \right )={e}^{x}-\frac {1} {{x}^{2}}\),∵ \(g(x)\) 在 \((0,\;\; + \infty )\) 上单调递增,且 \(g\left ( {1} \right )=e-1>0\),\(g\left ( {\frac {1} {2}} \right )=\sqrt {e}-4<0\) ,
∴存在唯一 \({x_0} \in \left( {\frac{1}{2},\;\;1} \right)\) ,使得\(g\left ( {{x}_{0}} \right )={e}^{{x}_{0}}-\frac {1} {{x}^{2}_{0}}=0\),即\( {e}^{{x}_{0}}=\frac{1}{{x}_{0}^{2}}\),
故 \(x \in (0,{x_0})\) 时,\(x-2<0\),\( {e}^{x}-\frac{1}{{x}^{2}}<0\), \(f'\left ( {x} \right )>0\),\(f\left ( {x} \right )\)单调递增,
\(x \in ({x_0},2)\) 时,\(x-2<0\),\( {e}^{x}-\frac{1}{{x}^{2}}>0\) ,\(f'\left ( {x} \right )<0\),\(f\left ( {x} \right )\)单调递减,
\(x \in (2, + \infty )\) 时,\(x-2>0\), \({{\rm{e}}^x} - \frac{1}{{{x^2}}} > 0\),\(f'\left ( {x} \right )>0\),\(f\left ( {x} \right )\)单调递增,
∴\(x = {x_0}\) 是函数f (x)的唯一极大值点;
∵\({x_0} \in \left( {\frac{1}{2},\;\;1} \right)\) ,∴ \(f\left ( {{x}_{0}} \right )>f\left ( {1} \right )=-2e-2\) ;又\( {e}^{{x}_{0}}=\frac{1}{{x}_{0}^{2}}\) ,即 \( \mathrm{ln}{x}_{0}=-\frac{{x}_{0}}{2}\),
∴\(f\left ( {{x}_{0}} \right )={e}^{{x}_{0}}\left ( {{x}_{0}-3} \right )-\left ( {\mathrm{ln}{x}_{0}+\frac {2} {{x}_{0}}} \right )=\frac {{x}_{0}-3} {{x}^{2}_{0}}+\frac {{x}_{0}} {2}-\frac {2} {{x}_{0}}=\frac {{x}_{0}} {2}-\frac {1} {{x}_{0}}-\frac {3} {{x}^{2}_{0}}\) ,
令 \(h(x) = \frac{x}{2} - \frac{1}{x} - \frac{3}{{{x^2}}}\) , \(x \in \left( {\frac{1}{2},\;\;1} \right)\) ,则 \(h'(x) = \frac{1}{2} + \frac{1}{{x_{}^2}} + \frac{6}{{x_{}^3}} > 0\) ,故 \(h(x)\) 在 \(\left( {\frac{1}{2},\;\;1} \right)\) 上单调递增,
故 \(f({x_0}) < h(1) = \frac{1}{2} - 1 - 3 = - \frac{7}{2}\) ,
综上所述:\(-2e-2<f\left ( {{x}_{0}} \right )<-\frac {7} {2}\) .