“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)


第341题



参考答案:见解析


解析:


\( f\left({x}_{1}\right)-\lambda \mathrm{ln}{x}_{1}=f\left({x}_{2}\right)-\lambda \mathrm{ln}{x}_{2}\) ,即 \( 2{x}_{1}-\mathrm{sin}{x}_{1}-\lambda \mathrm{ln}{x}_{1}=2{x}_{2}-\mathrm{sin}{x}_{2}-\lambda \mathrm{ln}{x}_{2}\) 



整理为 \( \lambda (\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1})=2({x}_{2}-{x}_{1})-(\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1})\) , 



 \(u(x) = x - \sin x\)  \( x>0\) 



 \( {u}^{\text{'}}\left(x\right)=1-\mathrm{cos}x\ge 0\) ,所以 \(u(x) = x - \sin x\)  \(\left ( {0,+\infty } \right )\) 上单调递增,



不妨设 \({x_1} < {x_2}\) ,所以 \( {x}_{1}-\mathrm{sin}{x}_{1}<{x}_{2}-\mathrm{sin}{x}_{2}\) ,从而 \( {x}_{2}-{x}_{1}>\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1}\) 



所以 \( \lambda (\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1})=2({x}_{2}-{x}_{1})-(\mathrm{sin}{x}_{2}-\mathrm{sin}{x}_{1})>2({x}_{2}-{x}_{1})-({x}_{2}-{x}_{1})={x}_{2}-{x}_{1}\) 



所以 \( \lambda >\frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}\).



下面证明: \( \frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) ,即证明: \( \frac{\frac{{x}_{2}}{{x}_{1}}-1}{\mathrm{ln}\frac{{x}_{2}}{{x}_{1}}}>\sqrt{\frac{{x}_{2}}{{x}_{1}}}\) 



 \( \frac{{x}_{2}}{{x}_{1}}=t\) ,即证明 \( \frac{t-1}{\mathrm{ln}t}>\sqrt{t}\) ,其中 \(t > 1\) ,只要证明 \( \frac{t-1}{\sqrt{t}}-\mathrm{ln}t>0\).



 \( v\left(t\right)=\frac{t-1}{\sqrt{t}}-\mathrm{ln}t(t>1)\) ,则 \( {v}^{\text{'}}\left(t\right)=\frac{(\sqrt{t}-1{)}^{2}}{2t\sqrt{t}}>0\) 



所以 \(v(t)\) \(\left ( {1,+\infty } \right )\)上单调递增,所以 \( v\left(t\right)>v\left(1\right)=\frac{1-1}{\sqrt{1}}-\mathrm{ln}1=0\) 



所以 \( \frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) 



所以 \( \lambda >\frac{{x}_{2}-{x}_{1}}{\mathrm{ln}{x}_{2}-\mathrm{ln}{x}_{1}}>\sqrt{{x}_{1}{x}_{2}}\) 



所以 \( {x}_{1}{x}_{2}<{\lambda }^{2}\) .



第342题



参考答案:\( \because f\left(x\right)=-2\text{ln}x+\frac{a}{{x}^{2}}+1\) ,

\( \therefore {f}^{\text{'}}\left(x\right)=-\frac{2{x}^{2}+2a}{{x}^{3}}(x>0)\) ,

当 \( a\ge 0\) 时, \( {f}^{\text{'}}\left(x\right)<0,f\left(x\right)\) 在 \(\left ( {0,+\infty } \right )\) 上为减函数;

当 \( a<0\) 时,由 \( {f}^{\text{'}}\left(x\right)>0\) 得: \(0<x<\sqrt {-a},\therefore f\left ( {x} \right )\) 在 \(\left ( {0,\sqrt {-a}} \right )\) 上为增函数;

由 \( {f}^{\text{'}}\left(x\right)<0\) 得: \(x>\sqrt {-a},\therefore f\left ( {x} \right )\) 在 \( \left(\sqrt{-a},+\infty \right)\) 上为减函数


第343题



参考答案:见解析


解析:


 由 (1) 可知:  \( a<0\)  且当  \( x=\sqrt{-a}\)  时, \( f\left(x\right)\) 取极大值为  \( f\left(\sqrt{-a}\right)=-\text{ln}\left(-a\right)\) 



从而  \( f\left(x\right)\)  的最大值为  \(f\left ( {\sqrt {-a}} \right )=-\text{ln}\left ( {-a} \right ){,x}_{0}=\sqrt {-a}\)



为满足题意,必有 \( f\left(\sqrt{-a}\right)=-\mathrm{ln}\left(-a\right)>0\) ,即 \( -1<a<0\) 



  \( h\left(x\right)=\text{ln}x-x\) , 则  \( {h}^{\text{'}}\left(x\right)=\frac{1}{x}-1=\frac{1-x}{x}\) 



当  \(x\in \left ( {0,1} \right )\)  时,  \( {h}^{\text{'}}\left(x\right)>0\) , 所以  \( h\left(x\right)\)  在 \(\left ( {0,1} \right )\) 上单调递増;



  \(x\in \left ( {1,+\infty } \right )\) 时,  \( {h}^{\text{'}}\left(x\right)<0\) , 所以  \( h\left(x\right)\)    \(\left ( {1,+\infty } \right )\) 上单调递减,



所以 \( h(x{)}_{\text{max}}=h\left(1\right)=-1<0\), 从而 \( \text{ln}x<x\)



\( \therefore 2f\left({x}_{0}\right)=-4\text{ln}\left(\sqrt{-a}\right)=2\text{ln}\left(-\frac{1}{a}\right)<-\frac{2}{a}\)



\(\because {x}_{1},{x}_{2}\)  是函数 \( f\left(x\right)\) 的两个不同的零点,



\(\therefore f\left ( {{x}_{1}} \right )=-2\text{ln}{x}_{1}+\frac {a} {{x}^{2}_{1}}+1=0,f\left ( {{x}_{2}} \right )=-2\text{ln}{x}_{2}+\frac {a} {{x}^{2}_{2}}+1=0\)



两式相减得: \( -\frac{1}{a}=\frac{{x}_{2}^{2}-{x}_{1}^{2}}{2{x}_{1}^{2}{{x}_{2}}^{2}\text{ln}\frac{{x}_{2}}{{x}_{1}}}\).



设 \({x_2} > {x_1} > 0\), 所以要证明: \( \frac{1}{{x}_{1}^{2}}+\frac{1}{{x}_{2}^{2}}>2f\left({x}_{0}\right)\)



只需要证明: \( \frac{1}{{x}_{1}{ }^{2}}+\frac{1}{{x}_{2}{ }^{2}}>2\times \frac{\left({x}_{2}{ }^{2}-{x}_{1}^{2}\right)}{2{x}_{1}^{2}{{x}_{2}}^{2}\text{ln}\frac{{x}_{2}}{{x}_{1}}}\).



即证明: \( \text{ln}\frac{{x}_{2}^{2}}{{x}_{1}^{2}}>\frac{2\left({x}_{2}^{2}-{x}_{1}^{2}\right)}{{x}_{1}^{2}+{x}_{2}^{2}}\), 也就是证明: \( \text{ln}\frac{{x}_{2}^{2}}{{x}_{1}^{2}}>\frac{2\left(\frac{{x}_{2}^{2}}{{x}_{1}^{2}}-1\right)}{\frac{{x}_{2}^{2}}{{x}_{1}^{2}}+1}\)



设 \(\frac {{x}^{2}_{2}} {{x}^{2}_{1}}=t\in \left ( {1,+\infty } \right )\), 下面就只需证明: \( \text{ln}t>\frac{2\left(t-1\right)}{t+1}(t>1)\)



设 \( g\left(t\right)=\text{ln}t-\frac{2\left(t-1\right)}{t+1}(t>1)\), 则 \( {g}^{\text{'}}\left(t\right)=\frac{1}{t}-\frac{4}{(t+1{)}^{2}}=\frac{(t-1{)}^{2}}{t(t+1{)}^{2}}>0\)



\( \therefore g\left(t\right)\) 在 \(\left ( {1,+\infty } \right )\) 上为增函数, 从而 \( g\left(t\right)=\text{ln}t-\frac{2\left(t-1\right)}{t+1}>g\left(1\right)=0\)



\( \therefore \text{ln}t>\frac{2\left(t-1\right)}{t+1}\) 成立, 从而 \(\frac {1} {{x}^{2}_{1}}+\frac {1} {{x}^{2}_{2}}>2f\left ( {{x}_{0}} \right )\)







第344题



参考答案:要证: \( \frac{1}{\sqrt{{1}^{2}+1}}+\frac{1}{\sqrt{{2}^{2}+2}}+\cdots +\frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}\left(n+1\right)\)

只需证: \( \frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}\left(n+1\right)-\mathrm{ln}n\)

只需证: \( 2\mathrm{ln}\sqrt{\frac{n+1}{n}}<\sqrt{\frac{n+1}{n}}-\sqrt{\frac{n}{n+1}}\)

令 \( t=\sqrt{\frac{n+1}{n}}\) ,只需证: \( 2\mathrm{ln}t<t-\frac{1}{t}\)(\(t > 1\))

令\(f\left ( {t} \right )=t-\frac {1} {t}-2\ln {t\left ( {t>1} \right )}\),则 \( {f}^{\text{'}}\left(t\right)=1+\frac{1}{{t}^{2}}-\frac{2}{t}=\frac{{t}^{2}-2t+1}{{t}^{2}}=\frac{(t-1{)}^{2}}{{t}^{2}}>0\)

则 \( f\left(t\right)\) 在 \((1,+\infty )\) 上递增, \( f\left(t\right)>f\left(1\right)=0\)

故 \( \frac{1}{\sqrt{{1}^{2}+1}}+\frac{1}{\sqrt{{2}^{2}+2}}+\cdots +\frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}2-\mathrm{ln}1+\mathrm{ln}3-\mathrm{ln}2+\cdots +\mathrm{ln}\left(n+1\right)-\mathrm{ln}n=\mathrm{ln}\left(n+1\right)\) ,

故不等式成立.


第345题



参考答案:见解析


解析:


法一: \( \forall x\in \left(0,+\infty \right)\) ,由 \( f\left(x\right)\le 2x-\frac{\mathrm{ln}x}{{e}^{x}}\) 可得 \( a\le {e}^{x}-\frac{\mathrm{ln}x+1}{x}\) ,其中 \( x>0\) ,



令 \( g\left(x\right)={e}^{x}-\frac{\mathrm{ln}x+1}{x}\) ,则 \( g\left(x\right)=\frac{x{e}^{x}-\mathrm{ln}x-1}{x}=\frac{{e}^{x+\mathit{ln}x}-\mathrm{ln}x-1}{x}\ge \frac{x+\mathrm{ln}x+1-\mathrm{ln}x-1}{x}=1\)



当且仅当 \( x+\mathrm{ln}x=0\) 取等号, \( \therefore a\le 1\).



法二: \( \forall x\in \left(0,+\infty \right)\) ,由 \( f\left(x\right)\le 2x-\frac{\mathrm{ln}x}{{e}^{x}}\) 可得 \( a\le {e}^{x}-\frac{\mathrm{ln}x+1}{x}\) ,其中 \( x>0\) ,



令 \( g\left(x\right)={e}^{x}-\frac{\mathrm{ln}x+1}{x}\) ,其中 \( x>0\) ,则 \( {g}^{\text{'}}\left(x\right)={e}^{x}+\frac{\mathrm{ln}x}{{x}^{2}}=\frac{{x}^{2}{e}^{x}+\mathrm{ln}x}{{x}^{2}}\) ,



令 \( h\left(x\right)={x}^{2}{e}^{x}+\mathrm{ln}x\) ,其中 \( x>0\) ,则 \( h\text{'}\left(x\right)=\left({x}^{2}+2x\right){e}^{x}+\frac{1}{x}>0\) ,



故函数 \( h\left(x\right)={x}^{2}{e}^{x}+\mathrm{ln}x\) 在 \( \left(0,+\infty \right)\) 上为增函数,



因为 \(h\left( {\frac{1}{2}} \right) = \frac{{\sqrt {\rm{e}} }}{4} - \ln 2 < 0\) , \( h\left(1\right)>0\) ,



所以,存在 \( {x}_{0}\in \left(\frac{1}{2},1\right)\) 使得 \( h\left({x}_{0}\right)={x}_{0}^{2}{e}^{{x}_{0}}+\mathrm{ln}{x}_{0}=0\) ,



则 \( {x}_{0}{e}^{{x}_{0}}=-\frac{1}{{x}_{0}}\mathrm{ln}{x}_{0}=\frac{1}{{x}_{0}}\mathrm{ln}\frac{1}{{x}_{0}}={e}^{\mathrm{ln}\frac{1}{{x}_{0}}}\mathrm{ln}\frac{1}{{x}_{0}}\) ,



令 \( p\left(x\right)=x{e}^{x}\) ,其中 \( x>0\) ,则 \( {p}^{\text{'}}\left(x\right)=\left(x+1\right){e}^{x}>0\) ,故函数 \( p\left(x\right)\) 在 \( \left(0,+\infty \right)\) 上为增函数,



因为 \( p\left({x}_{0}\right)=p\left(\mathrm{ln}\frac{1}{{x}_{0}}\right)\) ,所以, \( {x}_{0}=-\mathrm{ln}{x}_{0}\) ,可得 \( {x}_{0}+\mathrm{ln}{x}_{0}=\mathrm{ln}\left({x}_{0}{e}^{{x}_{0}}\right)=0\) ,则 \( {x}_{0}{e}^{{x}_{0}}=1\) ,



当 \( 0<x<{x}_{0}\) 时, \( {g}^{\text{'}}\left(x\right)<0\) ,此时函数 \( g\left(x\right)\) 单调递减,



当 \( x>{x}_{0}\) 时, \( {g}^{\text{'}}\left(x\right)>0\) ,此时函数 \( g\left(x\right)\) 单调递增,



所以, \(g\left ( {x} \right )_{\text{min}}=g\left ( {{x}_{0}} \right )=\frac {{x}_{0}{e}^{{x}_{0}}-\mathrm{ln}{x}_{0}-1} {{x}_{0}}=\frac {1+{x}_{0}-1} {{x}_{0}}=1\) , \( \therefore a\le 1\).



第346题



参考答案:由题意,函数 \( f\left(x\right)=\mathrm{ln}x+\frac{a}{x}\) ,可得 \( {f}^{\text{'}}\left(x\right)=\frac{1}{x}-\frac{a}{{x}^{2}}=\frac{x-a}{{x}^{2}}\) ,

当 \( a\le 0\) 时,则 \( {f}^{\text{'}}\left(x\right)>0\) , \( f\left(x\right)\) 在 \(\left ( {0,+\infty } \right )\) 上单调递增,没有极值,不符合题意;

当 \( a>0\) 时,当 \(x\in \left ( {0,a} \right )\) 时, \( {f}^{\text{'}}\left(x\right)<0\) , \( f\left(x\right)\) 单调递减;

当 \( x\in \left(a,+\infty \right)\) 时, \( {f}^{\text{'}}\left(x\right)>0\) , \( f\left(x\right)\) 单调递增,

所以 \( x=a\) 为 \( f\left(x\right)\) 的极小值点,故 \( f\left(a\right)=\mathrm{ln}a+1=0\) ,解得 \( a=\frac{1}{e}\).


第347题



参考答案:见解析


解析:


法一:证明:由题意,函数 \( g\left(x\right)=\left(1-\frac{1}{x}\right)\left(1+\mathrm{ln}x\right)+\frac{1}{{e}^{x}}\) ,且 \( g\left(2\right)>0\) 



要证 \( g\left(x\right)\) 无零点,只需证明 \( g\left(x\right)>0\) ,只需证 \( \left(x-1\right)\left(1+\mathrm{ln}x\right)+\frac{x}{{e}^{x}}>0\) 



即证 \( x\mathrm{ln}x+x-\mathrm{ln}x-1+\frac{x}{{e}^{x}}>0\) .



由(1)可知, \(\ln x + \frac{1}{{{\rm{e}}x}} \geqslant 0\) ,则 \( x\mathrm{ln}x\ge -\frac{1}{e}\) ,当且仅当 \( x=\frac{1}{e}\) 时,等号成立,



所以 \( x\mathrm{ln}x+x-\mathrm{ln}x-1+\frac{x}{{e}^{x}}\ge -\frac{1}{e}+x-\mathrm{ln}x-1+\frac{x}{{e}^{x}}\) .



构造函数 \( h\left(x\right)=\frac{x}{{e}^{x}}-\mathrm{ln}x+x-1-\frac{1}{e}\) ,则 \( {h}^{\text{'}}\left(x\right)=\frac{\left(x-1\right)\left({e}^{x}-x\right)}{x{e}^{x}}\) 



 \(\phi \left ( {x} \right )={e}^{x}-x,x>0\) ,可得 \( {\phi }^{\text{'}}\left(x\right)={e}^{x}-1>0\)  \( \phi \left(x\right)\) 单调递增,



所以 \( \phi \left(x\right)>\phi \left(0\right)=1>0\) ,所以 \( {e}^{x}-x>0\) 



 \(x\in \left ( {0,1} \right )\) 时, \( {h}^{\text{'}}\left(x\right)<0\)  \( h\left(x\right)\) 单调递减;



 \(x\in \left ( {1,+\infty } \right )\) 时, \( {h}^{\text{'}}\left(x\right)>0\)  \( h\left(x\right)\) 单调递增,



 \( h\left(x\right)\ge h\left(1\right)=0\) ,当且仅当 \( x=1\) 时,等号成立,



因为等号成立的条件不相同,所以 \( x\mathrm{ln}x+x-\mathrm{ln}x-1+\frac{x}{{e}^{x}}>0\) ,故 \( g\left(x\right)\) 无零点.



法二:证明:由题意,函数 \( g\left(x\right)=\left(1-\frac{1}{x}\right)\left(1+\mathrm{ln}x\right)+\frac{1}{{e}^{x}}\) ,且 \( g\left(2\right)>0\) 



要证 \( g\left(x\right)\) 无零点,只需证明 \( g\left(x\right)>0\)



当 \(x\ge 1,\left ( {1-\frac {1} {x}} \right )\left ( {1+\mathrm{ln}x} \right )+\frac {1} {{e}^{x}}>0\) 



当 \(0<x<1,1-\frac {1} {x}<0,\mathrm{ln}x<x-1,\frac {1} {{e}^{x}}>-x+1\) ,则 \( g\left(x\right)=\left(1-\frac{1}{x}\right)\left(1+\mathrm{ln}x\right)+\frac{1}{{e}^{x}}>(1-\frac{1}{x})(1+x-1)-x+1=0\)









第350题


A.\([0\),\(1)\)

B.\( [0,2)\cup \left\{-\frac{18}{{e}^{2}}\right\}\)

C.\( \left(0,2\right)\cup \left\{-\frac{18}{{e}^{2}}\right\}\)

D.\( [0,2\sqrt{e})\cup \left\{-\frac{18}{{e}^{2}}\right\}\)


参考答案:D






第355题



参考答案:见解析


解析:


因为 \( f\left(x\right)=\left({x}^{2}+1\right){e}^{x}-mx-1\) ,所以 \( f\text{'}\left(x\right)={\left(x+1\right)}^{2}{e}^{x}-m\) 



 \(m⩽0\) 时, \( f\text{'}\left(x\right)⩾0\)  \( f\left(x\right)\)  \(\left . {[-1,+\infty } \right )\) 为增函数,所以 \( f\left(x\right)\) 在\(\left . {[-1,+\infty } \right )\) 至多一个零点.



 \( m>0\) 时,由(1)得 \( f\text{'}\left(x\right)\) 在 \(\left . {[-1,+\infty } \right )\) 为增函数.因为 \( f\text{'}\left(0\right)=1-m\) \( f\left(0\right)=0\) .



)当 \( m=1\) 时, \( f\text{'}\left(0\right)=0\)  \( x>0\) 时, \( f\text{'}\left(x\right)>0\)  \( -1<x<0\) 时,\( f\text{'}\left(x\right)<0\) 



所以 \( f\left(x\right)\)  \(\left . {[-1,0} \right )\) 为减函数,在 \(\left . {[0,+\infty } \right )\) 为增函数, \(f\left ( {x} \right )_{\text{min}}=f\left ( {0} \right )=0\) .



 \( f\left(x\right)\)  \(\left . {[-1,+\infty } \right )\) 有且只有一个零点.



)当 \( m>1\) 时, \( f\text{'}\left(0\right)<0\)  \( f\text{'}\left(m\right)={\left(m+1\right)}^{2}{e}^{m}-m>0\) \( \exists {x}_{0}\in \left(0,m\right)\),使得 \( f\text{'}\left({x}_{0}\right)=0\) 



 \( f\left(x\right)\)  \(\left . {[-1,{x}_{0}} \right )\) 为减函数,在 \(\left( {{x_0}, + \infty } \right)\) 为增函数.



所以 \( f\left({x}_{0}\right)<f\left(0\right)=0\) ,又 \( f\left(m\right)=\left({m}^{2}+1\right){e}^{m}-{m}^{2}-1>\left({m}^{2}+1\right)-{m}^{2}-1=0\) 



根据零点存在性定理, \( f\left(x\right)\)  \( \left({x}_{0},m\right)\) 有且只有一个零点,又 \( f\left(x\right)\)  \(\left . {[-1,{x}_{0}} \right )\) 上有且只有一个零点0.



故当 \( m>1\) 时, \( f\left(x\right)\)  \(\left . {[-1,+\infty } \right )\) 有两个零点.



)当 \( 0<m<1\) 时,\( f\text{'}\left(-1\right)=-m<0\) \( f\text{'}\left(0\right)>0\) \( \exists {x}_{0}\in \left(-\mathrm{1,0}\right)\) ,使得\( f\text{'}\left({x}_{0}\right)=0\) ,且 \( f\left(x\right)\)  \(\left . {[-1{,x}_{0}} \right )\) 为减函数,在 \(\left( {{x_0}, + \infty } \right)\) 为增函数.



因为\( f\left(x\right)\)  \(\left( {{x_0}, + \infty } \right)\) 有且只有一个零点0,若 \( f\left(x\right)\)  \(\left . {[-1,+\infty } \right )\) 有两个零点,则 \( f\left(x\right)\) 在 \(\left . {[-1{,x}_{0}} \right )\) 有且只有一个零点.



 \( f\left({x}_{0}\right)<f\left(0\right)=0\) ,所以 \( f\left(-1\right)⩾0\)  \( f\left(-1\right)=\frac{2}{e}+m-1⩾0\) ,所以\( m⩾1-\frac{2}{e}\) 



即当 \( 1-\frac{2}{e}⩽m<1\)  \( f\left(x\right)\)  \(\left . {[-1,+\infty } \right )\) 有两个零点.



综上, \(m\)的取值范围为 \( 1-\frac{2}{e}⩽m<1\) 或 \( m>1\)



第356题



参考答案:见解析


解析:


 \( {f}^{\text{'}}\left(x\right)=\mathrm{cos}x-\frac{1}{x+1}\)  \( x\in \left(-1,+\infty \right)\) 



 \( g\left(x\right)=\mathrm{cos}x-\frac{1}{x+1}\)  \( x\in \left(-1,\frac{\pi }{2}\right)\) \( \therefore {g}^{\text{'}}\left(x\right)=-\mathrm{sin}x+\frac{1}{{\left(x+1\right)}^{2}}\)  \( x\in \left(-1,\frac{\pi }{2}\right)\) 



\( \because \frac{1}{{\left(x+1\right)}^{2}}\)  \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减, \( \frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{1}{7},\)  \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减\( \therefore {g}^{\text{'}}\left(x\right)\)  \( \left(-1,\frac{\pi }{2}\right)\) 上单调递减



①当 \(x\in (-1,0]\) 时,可知 \( {f}^{\text{'}}\left(x\right)\)  \((-1,0]\) 上单调递增 \( \therefore {f}^{\text{'}}\left(x\right)\le {f}^{\text{'}}\left(0\right)=0\) \( \therefore f\left(x\right)\) \((-1,0]\)上单调递减,又 \( f\left(0\right)=0\), \( \therefore x=0\)  \( f\left(x\right)\) 在 \((-1,0]\) 上的唯一零点



②当 \(x\in (0,\frac {\pi } {2}]\) 时,\(g'\left ( {0} \right )=-\sin {0}+1=1>0\) \( {g}^{\text{'}}\left(\frac{\pi }{2}\right)=-\mathrm{sin}\frac{\pi }{2}+\frac{4}{{\left(\pi +2\right)}^{2}}=\frac{4}{{\left(\pi +2\right)}^{2}}-1<0\) ,



\( \therefore \exists {x}_{0}\in \left(0,\frac{\pi }{2}\right)\) ,使得  \( {g}^{\text{'}}\left({x}_{0}\right)=0\)\( {f}^{\text{'}}\left(x\right)\)  \( \left(0,{x}_{0}\right)\) 上单调递增,在 \( \left({x}_{0},\frac{\pi }{2}\right)\) 上单调递减,又 \( {f}^{\text{'}}\left(0\right)=0\), \( \therefore {f}^{\text{'}}\left({x}_{0}\right)>0\)\( \therefore f\left(x\right)\)  \( \left(0,{x}_{0}\right)\) 上单调递增,此时 \( f\left(x\right)>f\left(0\right)=0\) ,不存在零点



 \( {f}^{\text{'}}\left(\frac{\pi }{2}\right)=\mathrm{cos}\frac{\pi }{2}-\frac{2}{\pi +2}=-\frac{2}{\pi +2}<0\) ,\( \therefore \exists {x}_{1}\in \left({x}_{0},\frac{\pi }{2}\right)\) ,使得 \( {f}^{\text{'}}\left({x}_{1}\right)=0\) 



\( \therefore f\left(x\right)\)  \( \left({x}_{0},{x}_{1}\right)\) 上单调递增,在 \( \left({x}_{1},\frac{\pi }{2}\right)\) 上单调递减,又\( f\left({x}_{0}\right)>f\left(0\right)=0\)  \( f\left(\frac{\pi }{2}\right)=\mathrm{sin}\frac{\pi }{2}-\mathrm{ln}\left(1+\frac{\pi }{2}\right)=\mathrm{ln}\frac{2e}{\pi +2}>\mathrm{ln}1=0\) \( \therefore f\left(x\right)>0\)  \( \left({x}_{0},\frac{\pi }{2}\right)\) 上恒成立,此时不存在零点③当 \( x\in \left[\frac{\pi }{2},\pi \right]\) 时, \(\sin {x}\)单调递减,\(-\ln {\left ( {x+1} \right )}\) 单调递减



\( \therefore f\left(x\right)\)  \( \left[\frac{\pi }{2},\pi \right]\) 上单调递减又 \( f\left(\frac{\pi }{2}\right)>0\) \( f\left(\pi \right)=\mathrm{sin}\pi -\mathrm{ln}\left(\pi +1\right)=-\mathrm{ln}\left(\pi +1\right)<0\) 



 \( f\left(\pi \right)\cdot f\left(\frac{\pi }{2}\right)<0\) ,又 \( f\left(x\right)\)  \( \left[\frac{\pi }{2},\pi \right]\) 上单调递减, \( \therefore f\left(x\right)\) \( \left[\frac{\pi }{2},\pi \right]\) 上存在唯一零点



④当 \(x \in \left( {\pi , + \infty } \right)\) 时, \( \mathrm{sin}x\in \left[-\mathrm{1,1}\right]\) \( \mathrm{ln}\left(x+1\right)>\mathrm{ln}\left(\pi +1\right)>\mathrm{ln}e=1\), \( \therefore \mathrm{sin}x-\mathrm{ln}\left(x+1\right)<0\) 



 \( f\left(x\right)\)  \( \left(\pi ,+\infty \right)\) 上不存在零点综上所述: \( f\left(x\right)\) 有且仅有\( 2\)个零点



第357题



参考答案:见解析


解析:


\(f\left ( {x} \right )=\left ( {x-2} \right ){e}^{x}+{a\left ( {x-1} \right )}^{2}\),可得\({f}^{^{\, '}}\left ( {x} \right )=\left ( {x-1} \right ){e}^{x}+2a\left ( {x-1} \right )=\left ( {x-1} \right )\left ( {{e}^{x}+2a} \right )\)



①当 \(a > 0\) 时, \(f(x)\) 在 \(( - \infty ,1)\) 递减;在 \((1, + \infty )\) 递增,




且 \(f\left ( {1} \right )\)\( = - e < 0\) , \(x \to + \infty \) , \(f(x) \to + \infty \) ;当 \(x \to - \infty \) 时 \(f(x) > 0\) 或找到一个 \(x < 1\) 使得 \(f(x) > 0\) 对于 \(a > 0\) 恒成立, \(f(x)\) 有两个零点;



②当 \(a = 0\) 时,\( \mathrm{f}\left(x\right)=\left(x-2\right){e}^{x}\),所以 \(f(x)\) 只有一个零点 \(x = 2\) 



③当 \(a < 0\) 时,若\(a<-\frac {e} {2}\)时, \(f(x)\) 在 \(\left ( {1,\mathrm{ln}\left ( {-2a} \right )} \right )\) 递减,在 \(( - \infty ,1)\) , \(\left ( {\mathrm{ln}\left ( {-2a} \right ),+\infty } \right )\) 递增,



又当 \(x⩽1\) 时,\(f(x) < 0\) ,所以 \(f(x)\) 不存在两个零点;



\(a⩾ - \frac{e}{2}\) 时,在 \(\left ( {-\infty ,\ln {\left ( {-2a} \right )}} \right )\) 单调增,在 \((1, + \infty )\) 单调增,



\(\left ( {\mathrm{ln}\left ( {-2a} \right ),1} \right )\) 单调减,只有\(f\left ( {\mathrm{ln}\left ( {-2a} \right )} \right )\)等于0才有两个零点,



而当 \(x⩽1\) 时, \(f(x) < 0\) ,所以只有一个零点不符题意.



综上可得, \(f(x)\) 有两个零点时, \(a\) 的取值范围为 \((0,+\infty )\) 



第358题



参考答案:见解析


解析:


(Ⅰ)由题意知\({f}^{\, '}\left ( {x} \right )=2+2ax-b\mathrm{sin}x\)  , \(\therefore \) \(\left\{ {\begin{array}{*{20}{l}} {f'(\frac{\pi }{2}) = 0} \\\ {f(\frac{\pi }{2}) = \frac{{3\pi }}{4}} \end{array}} \right.\) 解得 \(\left\{ {\begin{array}{*{20}{l}} {a = - \frac{1}{\pi }} \\\ {b = 1} \end{array}} \right.\) 



\(f\left ( {x} \right )=2x-\frac {1} {\pi }{x}^{2}+\mathrm{cos}x\), \({f}^{\, '}\left ( {x} \right )=2-\frac {2} {\pi }x-\mathrm{sin}x\) .当 \(0⩽x⩽\frac{\pi }{2}\) 时, \(f'(x)\) 为减函数,且 \(f'(\frac{\pi }{2}) = 0\) 



\(\therefore f'(x) > 0\) , \(f(x)\) 为增函数.



(Ⅱ)证明:由 \(f({x_1}) = f({x_2})\) ,得\( 2{x}_{1}-\frac{{x}_{1}^{2}}{\pi }+\mathrm{cos}{x}_{1}=2{x}_{2}-\frac{{x}_{2}^{2}}{\pi }+\mathrm{cos}{x}_{2}\mathrm{ }\)



所以\( 2\left({x}_{1}-{x}_{2}\right)-\frac{1}{\pi }\left({x}_{1}+{x}_{2}\right)\left({x}_{1}-{x}_{2}\right)+\mathrm{cos}{x}_{1}-\mathrm{cos}{x}_{2}=0\),两边同除以 \({x_1} - {x_2}\) ,得\( 2-\frac{1}{\pi }\left({x}_{1}+{x}_{2}\right)+\frac{\mathrm{cos}{x}_{1}-\mathrm{cos}{x}_{2}}{{x}_{1}-{x}_{2}}=0\) ,所以\( 2-\frac{1}{\pi }\left({x}_{1}+{x}_{2}\right)+\frac{-2\mathrm{sin}\frac{{x}_{1}+{x}_{2}}{2}\mathrm{sin}\frac{{x}_{1}-{x}_{2}}{2}}{{x}_{1}-{x}_{2}}=0\)



\({x_0} = \frac{{{x_1} + {x_2}}}{2}\) ,得\( 2-\frac{2}{\pi }{x}_{0}-\frac{2\mathrm{sin}{x}_{0}\mathrm{sin}\frac{{x}_{1}-{x}_{2}}{2}}{{x}_{1}-{x}_{2}}=0\),得\( 2-\frac{2}{\pi }{x}_{0}=\frac{2\mathrm{sin}{x}_{0}\mathrm{sin}\frac{{x}_{1}-{x}_{2}}{2}}{{x}_{1}-{x}_{2}}\).因为 \({f}^{\, '}\left ( {x} \right )=2-\frac {2x} {\pi }-\mathrm{sin}x\)



所以\({f}^{\, '}\left ( {x} \right )=2-\frac {2} {\pi }{x}_{0}-\mathrm{sin}{x}_{0}=\frac {2\mathrm{sin}{x}_{0}\mathrm{sin}\frac {{x}_{1}-{x}_{2}} {2}} {{x}_{1}-{x}_{2}}-\mathrm{sin}{x}_{0}=\mathrm{sin}{x}_{0}\left ( {\frac {\mathrm{sin}\frac {{x}_{1}-{x}_{2}} {2}} {\frac {{x}_{1}-{x}_{2}} {2}}-1} \right )\) 



因为\( \frac{\mathrm{sin}\frac{{x}_{1}-{x}_{2}}{2}}{\frac{{x}_{1}-{x}_{2}}{2}}=\frac{\mathrm{sin}\frac{{x}_{2}-{x}_{1}}{2}}{\frac{{x}_{2}-{x}_{1}}{2}}\),又 \(\frac{{{x_2} - {x_1}}}{2} \in (0,\frac{\pi }{2})\) ,易知\( 0<\mathrm{sin}\frac{{x}_{2}-{x}_{1}}{2}<\frac{{x}_{2}-{x}_{1}}{2}\),所以 \( \frac{\mathrm{sin}\frac{{x}_{1}-{x}_{2}}{2}}{\frac{{x}_{1}-{x}_{2}}{2}}-1<0\),又 \({x_0} \in (0,\pi )\) ,所以\( \mathrm{sin}{x}_{0}>0\),故 \(f'({x_0}) < 0\) ,得 \(f'(\frac{{{x_1} + {x_2}}}{2}) < 0\) 



第359题



参考答案:证明:\({f}^{\, '}\left ( {x} \right )=\mathrm{cos}x+\frac {1} {\cos^{2} {x}}-2\) ,因为 \(x \in ( - \frac{\pi }{2},\frac{\pi }{2})\) ,所以\( \mathrm{cos}x\in (0,1]\),

于是 \(f'(x) = 2\cos x + \frac{1}{{{{\cos }^2}x}} - 2⩾{\cos ^2}x + \frac{1}{{{{\cos }^2}x}} - 2⩾0\) (等号当且仅当 \(x = 0\) 时成立).

故函数 \(f(x)\) 在 \(( - \frac{\pi }{2},\frac{\pi }{2})\) 上单调递增.


第360题



参考答案:见解析


解析:


由(1)得 \(f(x)\) 在 \((0,\frac{\pi }{2})\) 上单调递增,又 \(f(0) = 0\) ,所以 \(f(x) > 0\) 



(ⅰ)当 \(m⩽0\) 时, \(f(x) > 0⩾m{x^2}\) 成立.



(ⅱ)当 \(m > 0\) 时,令\(p\left ( {x} \right )=\mathrm{sin}x-x\),则\({p}^{\, '}\left ( {x} \right )=\mathrm{cos}x-1\)



当 \(x \in (0,\frac{\pi }{2})\) 时,\(p'(x) < 0\) , \(p(x)\) 单调递减,又 \(p(0) = 0\) ,所以 \(p(x) < 0\) ,故 \(x \in (0,\frac{\pi }{2})\) 时, \( \mathrm{sin}x<x\)\((*)\)



\((*)\)式可得\(f\left ( {x} \right )-m{x}^{2}=\mathrm{sin}x+\mathrm{tan}x-2x-m{x}^{2}<\mathrm{tan}x-x-m{x}^{2}\)



\(g\left ( {x} \right )=\mathrm{tan}x-x-m{x}^{2}\),则\(g'(x) = {\tan ^2}x - 2mx\),由\((*)\)式可得\(g'(x) < \frac{{{x^2}}}{{{{\cos }^2}x}} - 2mx = \frac{x}{{{{\cos }^2}x}}(x - 2m{\cos ^2}x)\)



令 \(h(x) = x - 2m{\cos ^2}x\) ,得 \(h(x)\) 在 \((0,\frac{\pi }{2})\) 上单调递增,



又 \(h(0) < 0\) , \(h(\frac{\pi }{2}) > 0\) ,所以存在 \(t \in (0,\frac{\pi }{2})\) 使得 \(h(t) = 0\) ,即 \(x \in (0,t)\) 时,\(h(x) < 0\) 



所以 \(x \in (0,t)\) 时, \(g'(x) < 0\) , \(g(x)\) 单调递减,又 \(g(0) = 0\) ,所以 \(g(x) < 0\) 



即 \(x \in (0,t)\) 时, \(f(x) - m{x^2} < 0\) ,与 \(f(x) > m{x^2}\) 矛盾.



综上,满足条件的 \(m\) 的取值范围是 \(( - \infty \)\(0]\) 



进入题库练习及模拟考试