“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


 \( n\in {\mathbf{N}}^{*}\) ,证明: \( \frac{1}{\sqrt{{1}^{2}+1}}+\frac{1}{\sqrt{{2}^{2}+2}}+\cdots +\frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}\left(n+1\right)\) 



知识点:第五章 一元函数的导数及其应用


参考答案:要证: \( \frac{1}{\sqrt{{1}^{2}+1}}+\frac{1}{\sqrt{{2}^{2}+2}}+\cdots +\frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}\left(n+1\right)\)

只需证: \( \frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}\left(n+1\right)-\mathrm{ln}n\)

只需证: \( 2\mathrm{ln}\sqrt{\frac{n+1}{n}}<\sqrt{\frac{n+1}{n}}-\sqrt{\frac{n}{n+1}}\)

令 \( t=\sqrt{\frac{n+1}{n}}\) ,只需证: \( 2\mathrm{ln}t<t-\frac{1}{t}\)(\(t > 1\))

令\(f\left ( {t} \right )=t-\frac {1} {t}-2\ln {t\left ( {t>1} \right )}\),则 \( {f}^{\text{'}}\left(t\right)=1+\frac{1}{{t}^{2}}-\frac{2}{t}=\frac{{t}^{2}-2t+1}{{t}^{2}}=\frac{(t-1{)}^{2}}{{t}^{2}}>0\)

则 \( f\left(t\right)\) 在 \((1,+\infty )\) 上递增, \( f\left(t\right)>f\left(1\right)=0\)

故 \( \frac{1}{\sqrt{{1}^{2}+1}}+\frac{1}{\sqrt{{2}^{2}+2}}+\cdots +\frac{1}{\sqrt{{n}^{2}+n}}>\mathrm{ln}2-\mathrm{ln}1+\mathrm{ln}3-\mathrm{ln}2+\cdots +\mathrm{ln}\left(n+1\right)-\mathrm{ln}n=\mathrm{ln}\left(n+1\right)\) ,

故不等式成立.

进入考试题库