“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第二册(381题)





第324题



参考答案:由题意, \({f}^{\, '}\left ( {x} \right )={e}^{x}-ex\) ,

令 \(g\left ( {x} \right )={e}^{x}-ex\) ,则 \({g}^{\, '}\left ( {x} \right )={e}^{x}-e\) ,令 \(g'(x) = 0\) ,则 \(x = 1\) ,

故在区间 \((-\infty ,1)\) 上, \(g'(x) < 0\) , \(g(x)\) 为减函数;

在区间 \((1,+\infty )\) 上, \(g'(x) > 0\) , \(g(x)\) 为增函数,

∴ \(g{(x)_{\min }} = g(1) = 0\),

故 \(f'\left( x \right) \geqslant f'(1) = 0\) ,故\(f\left ( {x} \right )\)在\(\text{R}\)上为增函数. \(f(1) = \frac{{\rm{e}}}{2}\) ,故由 \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2f(1)\) , \({x_1} < {x_2}\) ,

可得 \(f\left( {{x_1}} \right) < f(1) < f\left( {{x_2}} \right)\) ,则 \({x_1} < 1 < {x_2}\) .

欲证: \({x_1} + {x_2} < 2\) ,只需证: \({x_1} < 2 - {x_2}\) ,即证: \(f\left( {{x_1}} \right) < f\left( {2 - {x_2}} \right)\) ,即证:\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\) .

令\(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {2-x} \right )-e\left ( {x>1} \right )\),则\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )+{f}^{\, '}\left ( {2-x} \right )={e}^{x}-ex-{e}^{2-x}+e\left ( {2-x} \right )\) ,

令 \(H(x) = F'(x)\) ,则 \({H}^{\, '}\left ( {x} \right )={e}^{x}-ex+{e}^{2-x}-e\) ,

故 \({F^\prime }(x)\) 为增函数, \(F'(x) > F'(1) = 0\) ,故 \(F(x)\) 为增函数, \(F(x) > F(1) = 0\) ,

故 \(F\left( {{x_2}} \right) > 0\) ,则\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\),∴ \({x_1} + {x_2} < 2\) .


第325题



参考答案:函数 \(f\left( x \right) = 2x + 2a{\rm{ln}}x\) 的定义域为 \(\left( {0, + \infty } \right)\) , \(f'\left( x \right) = 2 + \frac{{2a}}{x}\),

由已知得在 \(x = 1\) 处的切线 \(l\) 的斜率为 4,

则 \(f'\left( 1 \right) = 4\) ,即 \(2 + 2a = 4\) ,解得 \(a = 1\) ;


解析:




第326题



参考答案:证明:由题意可知, \(g'(x) = \frac{2}{x} + 2bx - 2 = \frac{{2b{x^2} - 2x + 2}}{x}\) ,

∵ \(g(x)\) 有两个极值点 \({x_1}\),\({x_2}({x_1} < {x_2})\),

∴ \({x_1}\),\({x_2}\) 是 \(2b{x^2} - 2x + 2 = 0\) 的两个根,则 \(\left\{ {\begin{array}{*{20}{l}} {{x_1} + {x_2} = \frac{1}{b}} \\ {{x_1}{x_2} = \frac{1}{b}} \end{array}} \right.\),

∴\(g({x_1}) - g({x_2}) = ({\rm{ln}}x_1^2 + bx_1^2 - 2{x_1}) - ({\rm{ln}}x_2^2 + bx_2^2 - 2{x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + b(x_1^2 - x_2^2) - 2({x_1} - {x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_1}^2 - {x_2}^2}}{{{x_1} + {x_2}}} - 2({x_1} - {x_2})\)

\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2})\),

∴要证 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) ,即证 \(2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2}) < (2b - 1)({x_1} - {x_2})\) ,

即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < b({x_1} - {x_2})\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{{x_1} - {x_2}}}{{{x_1} + {x_2}}}\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{\frac{{{x_1}}}{{{x_2}}} - 1}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\) ,

令 \(t = \frac{{{x_1}}}{{{x_2}}}(0 < t < 1)\) ,则证明 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,令 \(h(t) = {\rm{ln}}t - \frac{{t - 1}}{{t + 1}}\) ,则 \({h^\prime }(t) = \frac{{{t^2} + 1}}{{t{{(t + 1)}^2}}} > 0\),

∴ \(h(t)\) 在 \((0,1)\) 上单调递增,

则 \(h(t) < h\left( 1 \right) = 0\) ,即 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,所以原不等式 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) 成立.


第327题



参考答案:令 \(g\left( x \right) = f\left( x \right) - x = \ln x + 2{x^2} - x - 2\left( {x > 0} \right)\) ,

所以 \(g'\left( x \right) = \frac{1}{x} + 4x - 1 \geqslant 2\sqrt {\frac{1}{x} \cdot 4x} - 1 = 3 > 0\) ,

所以函数 \(g\left( x \right)\) 在\(\left( {0, + \infty } \right)\) 上单调递增,

因为 \({x_1}\),\({x_2}\) 是两个正数,且 \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) \geqslant {x_1} + {x_2}\)

所以 \(g\left( {{x_1}} \right) + g\left( {{x_2}} \right) \geqslant 0\),

不妨设 \({x_1} \leqslant {x_2}\),

当 \({x_1} > \frac{1}{2}\) 时,命题 \({x_1} + {x_2} > 1\) 显然成立,得证.

当 \(0 < {x_1} \leqslant \frac{1}{2}\) 时,令 \(F(x) = g(x) + g(1 - x),\left( {0 < x \leqslant \frac{1}{2}} \right)\)

所以 \(F'(x) = \frac{1}{x} + 4x - 1 - \frac{1}{{1 - x}} + 4x - 3 = \frac{{{{(1 - 2x)}^3}}}{{x(1 - x)}},\)

所以当\(x\in (0,\frac {1} {2}]\)时, \(1-2x\geqslant 0,1-x>0\) ,故 \(F'(x) \geqslant 0,\)

所以函数 \(F(x)\) 在\(x\in (0,\frac {1} {2}]\)上单调递增,

所以 \(F(x) \leqslant F\left( {\frac{1}{2}} \right) = - 2\ln 2 - 4 < 0,\)即 \(g(x) + g(1 - x) < 0\) ,

所以 \(g\left( {{x_1}} \right) < - g\left( {1 - {x_1}} \right)\) ,

因为 \(g({x_1}) \geqslant - g({x_2})\) ,所以 \( - g({x_2}) \leqslant g({x_1}) < - g(1 - {x_1})\)

所以 \(g({x_2}) > g(1 - {x_1})\),

因为函数 \(g\left( x \right)\) 在 \(\left( {0, + \infty } \right)\) 上单调递增,

所以 \({x_2} > 1 - {x_1}\) ,即 \({x_1} + {x_2} > 1\) .

综上, \({x_1} + {x_2} > 1\) ,证毕.


第328题





参考答案:\({f}^{\, '}\left ( {x} \right )={e}^{x}-x-a\),令 \(g\left ( {x} \right )={f}^{\, '}\left ( {x} \right )\) ,则\({g}^{\, '}\left ( {x} \right )={e}^{x}-1\)

所以\(g\left ( {x} \right )\)在\(\left ( {-\infty ,0} \right )\)上单调递减,在\(\left ( {0,\infty } \right )\)上单调递增

当\(a\leq 1\)时,\(g\left ( {x} \right )_{\text{min}}=g\left ( {0} \right )=1-a\geq 0\),即 \({f}^{\, '}\left ( {x} \right )\geq 0\) ,所以\(f\left ( {x} \right )\)在\(\text{R}\)上递增.

不妨设\({x}_{1}<{x}_{2}\),则 \({x}_{2}>0\)

要证: \({x}_{1}+{x}_{2}<0\)

只需证: \({x}_{1}<-{x}_{2}\)

只需证: \(f\left ( {{x}_{1}} \right )<f\left ( {{-x}_{2}} \right )\)

只需证: \(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\)

令 \(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {-x} \right )-2\left ( {x>0} \right )\),\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )-{f}^{\, '}\left ( {-x} \right )={e}^{x}-{e}^{-x}-2x\)

\({F}^{\, ''}\left ( {x} \right )={e}^{x}+{e}^{-x}-2>0\),所以\({F}^{\, '}\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,有\({F}^{\, '}\left ( {x} \right )>{F}^{\, '}\left ( {0} \right )=0\)

所以\(F\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,即\(F\left ( {x} \right )>F\left ( {0} \right )=0\),故\(F\left ( {{x}_{2}} \right )>0\),即\(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\),所以\({x}_{1}+{x}_{2}<0\).


第329题



参考答案:先证: \(\ln {x}>\frac {2\left ( {x-1} \right )} {x+1}\left ( {x>1} \right ),\ln {x}<\frac {2\left ( {x-1} \right )} {x+1}\left ( {0<x<1} \right )\)

不妨设\(0<{x}_{1}<\frac {1} {a}{<x}_{2}\)

\(\frac {{x}_{2}} {\frac {1} {a}}=a{x}_{2}>1⇒\ln {\left ( {a{x}_{2}} \right )}>\frac {2\left ( {a{x}_{2}-1} \right )} {a{x}_{2}+1}⇔{a}^{2}{x}^{2}_{2}+\left ( {a\ln {a-a}} \right ){x}_{2}+\ln {a+2>0}\)①

\(\frac {{x}_{1}} {\frac {1} {a}}=a{x}_{1}<1⇒\ln {\left ( {a{x}_{1}} \right )}<\frac {2\left ( {a{x}_{1}-1} \right )} {a{x}_{1}+1}⇔{a}^{2}{x}^{2}_{1}+\left ( {a\ln {a-a}} \right ){x}_{1}+\ln {a+2<0}\)②

①-②:\({a}^{2}\left ( {{x}^{2}_{2}-{x}^{2}_{1}} \right )+\left ( {a\ln {a-a}} \right )\left ( {{x}_{2}-{x}_{1}} \right )>0\)则\({x_1}{\rm{ + }}{x_2} > \frac{{1 - \ln a}}{a}\)


第330题



参考答案:\(f\left ( {x} \right )\) 的定义域为 \((0,+\infty )\) ,

\(f'(x) = \left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right){{\rm{e}}^x} - \frac{1}{x} + 1\)\( = \frac{1}{x}\left( {1 - \frac{1}{x}} \right){{\rm{e}}^x} + \left( {1 - \frac{1}{x}} \right) = \frac{{x - 1}}{x}\left( {\frac{{{{\rm{e}}^x}}}{x} + 1} \right)\)

令 \(f(x) = 0\),得 \(x = 1\)

当 \(x\in (0,1),f'(x)<0,f(x)\) 单调递减

当 \(x\in (1,+\infty ),f'(x)>0,f(x)\) 单调递增 \(f(x) \geqslant f(1) = {\rm{e}} + 1 - a\) ,

若 \(f\left ( {x} \right )\geq 0\), 则 \({\rm{e}} + 1 - a \geqslant 0\),即 \(a \leqslant {\rm{e}} + 1\)

所以 \(a\) 的取值范围为 \((-\infty ,e+1]\)


解析:




第331题



参考答案:由题知, \(f\left( x \right)\) 一个零点小于 1,一个零点大于 1

不妨设 \({x_1} < 1 < {x_2}\)

要证 \({x_1}{x_2} < 1\),即证 \({x_1} < \frac{1}{{{x_2}}}\)

因为 \({{x}_{1}},\frac {1} {{x}_{2}}\in (0,1)\), 即证 \(f\left( {{x_1}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)

因为 \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\), 即证 \(f\left( {{x_2}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)

设\(g\left ( {x} \right )=f\left ( {x} \right )-f\left ( {\frac {1} {x}} \right )\left ( {x>1} \right )\),则\(g'\left ( {x} \right )=f'\left ( {x} \right )-\frac {1} {{x}^{2}}f'\left ( {\frac {1} {x}} \right )=\frac {\left ( {x-1} \right )\left ( {{e}^{x}+x-x{e}^{\frac {1} {x}}-1} \right )} {{x}^{2}}\)

下证: \(h\left ( {x} \right )={e}^{x}+x-x{e}^{\frac {1} {x}}-1>0\left ( {x>1} \right )\)


\({h}^{'}\left ( {x} \right )={e}^{x}+1-{e}^{\frac {1} {x}}+x{e}^{\frac {1} {x}}>0\) ,所以 \(h\left ( {x} \right )>h\left ( {1} \right )=0\)即 \(g'(x) > 0\)

所以 \(g(x)\) 在 \((1,+\infty )\) 单调递增

即 \(g(x) > g(1) = 0\) 即证

法二:令\(t=\frac {{e}^{x}} {x}\),\(f\left ( {x} \right )=\frac {{e}^{x}} {x}-\ln {x+x-a=\frac {{e}^{x}} {x}}+\ln {\frac {{e}^{x}} {x}}-a\) 有两个零点等价于 \(t-\ln {t-a=}0\) 有两个零点

又\(\ln {t}=x-\ln {x}\),则\(\left \{ \begin{gathered} {\ln {t}={x}_{1}-\ln {{x}_{1}}} \\ {\ln {t}={x}_{2}-\ln {{x}_{2}}} \end{gathered} \right .\),所以\({x}_{1}-\ln {{x}_{1}}={x}_{2}-\ln {{x}_{2}}\)

由对数均值不等式可得\(\sqrt {{x}_{1}{x}_{2}}<\frac {{x}_{1}{-x}_{2}} {\ln {{x}_{1}-\ln {{x}_{2}}}}=1\),即 \({x_1}{x_2} < 1\) .


第332题



参考答案:见解析


解析:


法一:分析构造法

由\(f\left ( {x} \right )=\ln {x}-ax⇔a=\frac {\ln {x}} {x}\),令\(g\left ( {x} \right )=\frac {\ln {x}} {x}-a\),有\(g\left ( {{x}_{1}} \right )=g\left ( {{x}_{2}} \right )=0\),\({g}^{\, '}\left ( {x} \right )=\frac {1-\ln {x}} {{x}^{2}}\),则\(g\left ( {x} \right )\)在\(\left ( {0,e} \right )\)上递增,\(\left ( {e,+\infty } \right )\)上递减


不妨设\(1<{x}_{1}<e<{x}_{2}\)


要证: \({x_1}{x_2} > {e^2}\) ,只需证:\({x}_{1}>\frac {{e}^{2}} {{x}_{2}}\),只需证:\(g\left ( {{x}_{1}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\),只需证: \(g\left ( {{x}_{2}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\) ,


\(F\left ( {x} \right )=g\left ( {x} \right )-g\left ( {\frac {{e}^{2}} {x}} \right )\left ( {x>e} \right )\) , \({F}^{\, '}\left ( {x} \right )={g}^{'}\left ( {x} \right )-{\frac {{e}^{2}} {{x}^{2}}g}^{,}\left ( {\frac {{e}^{2}} {x}} \right )=\frac {\left ( {\ln {x-1}} \right )\left ( {{x}^{2}-{e}^{2}} \right )} {{e}^{2}{x}^{2}}\)


则\(F\left ( {x} \right )>F\left ( {e} \right )=0\),即证。


法二:构造一元偏差函数


要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\) ,由 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\) 只需证\({x}_{1}+{x}_{2}>\frac {2} {a}\)


构造函数\(F\left ( {x} \right )=f\left ( {\frac {1} {a}+x} \right )-f\left ( {\frac {1} {a}-x} \right )\left ( {x>\frac {1} {a}} \right )\),易证。


法三:对数均值不等式


因为 \(f\left( x \right)\) 有两个相异的零点,又由于 \(x > 0\) ,故不妨设令 \({x_1} > {x_2} > 0\) ,


且有 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\)


 \(\therefore \ln {x_1} + \ln {x_2} = a\left( {{x_1} + {x_2}} \right),\ln {x_1} - \ln {x_2} = a\left( {{x_1} - {x_2}} \right)\) ,


要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\)


\( \Leftrightarrow ({x_1} + {x_2})\frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > 2 \Leftrightarrow \frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > \frac{2}{{{x_1} + {x_2}}}\)


\( \Leftrightarrow \ln {x_1} - \ln {x_2} > \frac{{2\left( {{x_1} - {x_2}} \right)}}{{{x_1} + {x_2}}} \Leftrightarrow \ln \frac{{{x_1}}}{{{x_2}}} > \frac{{2\left( {\frac{{{x_1}}}{{{x_2}}} - 1} \right)}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\)


令 \(t = \frac{{{x_1}}}{{{x_2}}}\) ,则 \(t > 1\) ,所以只要证明 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}},t > 1\) 时恒成立,


令 \(g\left( t \right) = \ln t - \frac{{2\left( {t - 1} \right)}}{{t + 1}}\),\(t > 1\)


\({\rm{g'}}\left( t \right) = \frac{1}{t} - \frac{4}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{{\left( {t - 1} \right)}^2}}}{{t{{\left( {t + 1} \right)}^2}}},\) 由于已知 \(t > 1\therefore g'\left( t \right) > 0\) 恒成立,


所以 \(g\left( t \right)\) 在 \((1, + \infty )\) 递增, \(\therefore g\left( t \right) > g\left( 1 \right) = 0\)


所以 \(t > 1\) 时, \(g\left( t \right) > 0\) 恒成立,即 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}}\) 恒成立,从而证明 \({x_1}{x_2} > {e^2}\).


法四:比值代换


令 \({t}_{1}=\ln {{x}_{1}}\),\({t}_{2}=\ln {{x}_{2}}\)


由\(\ln {{x}_{1}}=a{{x}_{1}}\), \(\ln {{x}_{2}}=a{{x}_{2}}\) 得 \({t}_{1}=a{e}^{{t}_{1}}\) ,\({t}_{2}=a{e}^{{t}_{2}}\),\(\therefore \frac {{t}_{1}} {{t}_{2}}={e}^{{t}_{2}-{t}_{1}}\)


要证\({x}_{1}{x}_{2}>{e}^{2}⇔\ln {\left ( {{x}_{1}{x}_{2}} \right )>2⇔\ln {{x}_{1}}}+\ln {{x}_{2}}>2⇔{t}_{1}+{t}_{2}>2\)


令\(k=\frac {{t}_{2}} {{t}_{1}}>1\),则 \({t}_{2}-{t}_{1}=\ln {k}\)


\(\therefore {t}_{1}=\frac {\ln {k}} {k-1}\),\({t}_{2}=\frac {k\ln {k}} {k-1}\),则\({t}_{1}+{t}_{2}=\frac {\left ( {k+1} \right )\ln {k}} {k-1}\)


只需证:\(\ln {k>\frac {2\left ( {k-1} \right )} {k+1}}\left ( {k>1} \right )\)同理法三



第333题



参考答案:见解析


解析:


法一:构造一元偏差函数



\({f}^{\text{'}}\left ( {x} \right )=\frac {1-x} {{e}^{x}}\) ,则 \( f\left(x\right)\) 在 \((-\infty ,1)\) 上递增, \((1,+\infty )\) 上递减



令 \( F\left(x\right)=f(1+x)-f(1-x)(x>0)\)



\( \therefore {F}^{\text{'}}\left(x\right)={f}^{\text{'}}(1+x)+{f}^{\text{'}}(1-x)=\frac{-x}{{e}^{1+x}}+\frac{x}{{e}^{1-x}}=\frac{x({e}^{1+x}-{e}^{1-x})}{{e}^{2}}>0\) 



 \( \therefore F\left(x\right)>F\left(0\right)=0\) 即 \( f(1+x)>f(1-x)\)



不妨设 \( 0<{x}_{1}<1<{x}_{2}\)



\( \therefore f\left({x}_{1}\right)=f\left({x}_{2}\right)=f(1+({x}_{2}-1\left)\right)>f(1-({x}_{2}-1\left)\right)=f(2-{x}_{2})\) 



显然 \( 2-{x}_{2}<1\) ,又 \( f\left(x\right)\) 在 \( (-\infty ,1)\) 上递增,则 \( {x}_{1}>2-{x}_{2}\) ,即 \( {x}_{1}+{x}_{2}>2\)



法二:比值代换



由 \( f\left({x}_{1}\right)=f\left({x}_{2}\right)\) 得 \( {x}_{1}{e}^{-{x}_{1}}={x}_{2}{e}^{-{x}_{2}}\) ,则 \( {e}^{{x}_{2}-{x}_{1}}=\frac{{x}_{2}}{{x}_{1}}\)



不妨设 \( 0<{x}_{1}<1<{x}_{2}\) ,令 \( t=\frac{{x}_{2}}{{x}_{1}}(t>1)\) ,则 \({x}_{2}-{x}_{1}>\ln {t}\)



\({\therefore x}_{1}=\frac {\ln {t}} {t-1}\)\({x}_{2}=\frac {t\ln {t}} {t-1}\),则\({\therefore x}_{1}+{x}_{2}=\frac {\left ( {t+1} \right )\ln {t}} {t-1}\) 



要证: \( {x}_{1}+{x}_{2}>2\) ,只需证: \(\frac {\left ( {t+1} \right )\ln {t}} {t-1}>2\), 即证:\(\ln {t}>\frac {2\left ( {t-1} \right )} {t+1}\) 



令 \(h\left ( {t} \right )=\ln {t}-\frac {2\left ( {t-1} \right )} {t+1}\) ,则 \( {h}^{\text{'}}\left(t\right)=\frac{1}{t}-\frac{4}{(t+1{)}^{2}}=\frac{(t-1{)}^{2}}{t(t+1{)}^{2}}>0\)



 \( \therefore h\left(t\right)>h\left(1\right)=0\) 即证



法三:对数均值不等式



设 \( f\left({x}_{1}\right)=f\left({x}_{2}\right)=t\) ,则 \( \frac{{x}_{1}}{{e}^{{x}_{1}}}=t\) , \( \frac{{x}_{2}}{{e}^{{x}_{2}}}=t\) , \( ({x}_{1}\ne {x}_{2})\) 两边取对数



\(\ln {{x}_{1}}-{x}_{1}=\ln {t}\)



\(\ln {{x}_{2}}-{x}_{2}=\ln {t}\)



-得:\(\frac {{x}_{1}-{x}_{2}} {\ln {{x}_{1}}-\ln {{x}_{2}}}=1\) 



根据对数平均值不等式\(\frac {{{x}_{1}+x}_{2}} {2}>\frac {{x}_{1}-{x}_{2}} {\ln {{x}_{1}}-\ln {{x}_{2}}}=1\) 



\( \therefore {x}_{1}+{x}_{2}>2\) 









第340题



参考答案:见解析


解析:


由题意可知,存在 \( x>0\) ,使得 \( m{x}^{3}+\frac{1}{2}{x}^{4}-x\ge x{e}^{x}-{x}^{2}-2x\) ,即 \( m\ge \frac{{e}^{x}-1}{{x}^{2}}-\frac{1}{2}x-\frac{1}{x}\) 



令 \( g\left(x\right)=\frac{{e}^{x}-1}{{x}^{2}}-\frac{1}{2}x-\frac{1}{x}\) ,其中 \( x>0\) ,则 \( {g}^{\text{'}}\left(x\right)=\frac{x{e}^{x}-2\left({e}^{x}-1\right)}{{x}^{3}}-\frac{1}{2}+\frac{1}{{x}^{2}}=\frac{\left(x-2\right)\left(2{e}^{x}-{x}^{2}-2x-2\right)}{2{x}^{3}}\) ,



 \( h\left(x\right)=2{e}^{x}-{x}^{2}-2x-2\) ,其中 \( x>0\) ,则 \( {h}^{\text{'}}\left(x\right)=2{e}^{x}-2x-2\) 



 \( p\left(x\right)={h}^{\text{'}}\left(x\right)\) ,其中 \( x>0\) ,则 \( {p}^{\text{'}}\left(x\right)=2{e}^{x}-2>0\) 



所以函数 \( {h}^{\text{'}}\left(x\right)\)  \(\left ( {0,+\infty } \right )\) 上单调递增,则 \( {h}^{\text{'}}\left(x\right)>{h}^{\text{'}}\left(0\right)=0\) 



所以函数 \( h\left(x\right)\)  \(\left ( {0,+\infty } \right )\) 上单调递增,则 \( h\left(x\right)>h\left(0\right)=0\) 



所以,当 \( 0<x<2\) 时, \( {g}^{\text{'}}\left(x\right)<0\) ,函数 \( g\left(x\right)\) 单调递减,



 \( x>2\) 时, \( {g}^{\text{'}}\left(x\right)>0\) ,函数 \( g\left(x\right)\) 单调递增,则 \(g\left ( {x} \right )_{\text{min}}=g\left ( {2} \right )=\frac {{e}^{2}-7} {4}\) 



所以, \( m\ge \frac{{e}^{2}-7}{4}\) .



进入题库练习及模拟考试