“微信扫一扫”进入考试题库练习及模拟考试
参考答案:\([-\frac {1} {8},+\infty )\)
参考答案:\(1-\frac {1} {{e}^{2}}<a\leq e-1\)
参考答案:\(\left ( {-\infty ,-4} \right )\cup \left ( {0,4} \right )\)
参考答案:由题意, \({f}^{\, '}\left ( {x} \right )={e}^{x}-ex\) ,
令 \(g\left ( {x} \right )={e}^{x}-ex\) ,则 \({g}^{\, '}\left ( {x} \right )={e}^{x}-e\) ,令 \(g'(x) = 0\) ,则 \(x = 1\) ,
故在区间 \((-\infty ,1)\) 上, \(g'(x) < 0\) , \(g(x)\) 为减函数;
在区间 \((1,+\infty )\) 上, \(g'(x) > 0\) , \(g(x)\) 为增函数,
∴ \(g{(x)_{\min }} = g(1) = 0\),
故 \(f'\left( x \right) \geqslant f'(1) = 0\) ,故\(f\left ( {x} \right )\)在\(\text{R}\)上为增函数. \(f(1) = \frac{{\rm{e}}}{2}\) ,故由 \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2f(1)\) , \({x_1} < {x_2}\) ,
可得 \(f\left( {{x_1}} \right) < f(1) < f\left( {{x_2}} \right)\) ,则 \({x_1} < 1 < {x_2}\) .
欲证: \({x_1} + {x_2} < 2\) ,只需证: \({x_1} < 2 - {x_2}\) ,即证: \(f\left( {{x_1}} \right) < f\left( {2 - {x_2}} \right)\) ,即证:\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\) .
令\(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {2-x} \right )-e\left ( {x>1} \right )\),则\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )+{f}^{\, '}\left ( {2-x} \right )={e}^{x}-ex-{e}^{2-x}+e\left ( {2-x} \right )\) ,
令 \(H(x) = F'(x)\) ,则 \({H}^{\, '}\left ( {x} \right )={e}^{x}-ex+{e}^{2-x}-e\) ,
故 \({F^\prime }(x)\) 为增函数, \(F'(x) > F'(1) = 0\) ,故 \(F(x)\) 为增函数, \(F(x) > F(1) = 0\) ,
故 \(F\left( {{x_2}} \right) > 0\) ,则\(e-f\left ( {{{x}_{2}}} \right )<f\left ( {2-{{x}_{2}}} \right )\),∴ \({x_1} + {x_2} < 2\) .
第325题
求实数
参考答案:函数 \(f\left( x \right) = 2x + 2a{\rm{ln}}x\) 的定义域为 \(\left( {0, + \infty } \right)\) , \(f'\left( x \right) = 2 + \frac{{2a}}{x}\),
由已知得在 \(x = 1\) 处的切线 \(l\) 的斜率为 4,
则 \(f'\left( 1 \right) = 4\) ,即 \(2 + 2a = 4\) ,解得 \(a = 1\) ;
解析:
参考答案:证明:由题意可知, \(g'(x) = \frac{2}{x} + 2bx - 2 = \frac{{2b{x^2} - 2x + 2}}{x}\) ,
∵ \(g(x)\) 有两个极值点 \({x_1}\),\({x_2}({x_1} < {x_2})\),
∴ \({x_1}\),\({x_2}\) 是 \(2b{x^2} - 2x + 2 = 0\) 的两个根,则 \(\left\{ {\begin{array}{*{20}{l}} {{x_1} + {x_2} = \frac{1}{b}} \\ {{x_1}{x_2} = \frac{1}{b}} \end{array}} \right.\),
∴\(g({x_1}) - g({x_2}) = ({\rm{ln}}x_1^2 + bx_1^2 - 2{x_1}) - ({\rm{ln}}x_2^2 + bx_2^2 - 2{x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + b(x_1^2 - x_2^2) - 2({x_1} - {x_2})\)\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_1}^2 - {x_2}^2}}{{{x_1} + {x_2}}} - 2({x_1} - {x_2})\)
\( = 2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2})\),
∴要证 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) ,即证 \(2{\rm{ln}}\frac{{{x_1}}}{{{x_2}}} - ({x_1} - {x_2}) < (2b - 1)({x_1} - {x_2})\) ,
即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < b({x_1} - {x_2})\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{{x_1} - {x_2}}}{{{x_1} + {x_2}}}\) ,即证 \({\rm{ln}}\frac{{{x_1}}}{{{x_2}}} < \frac{{\frac{{{x_1}}}{{{x_2}}} - 1}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\) ,
令 \(t = \frac{{{x_1}}}{{{x_2}}}(0 < t < 1)\) ,则证明 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,令 \(h(t) = {\rm{ln}}t - \frac{{t - 1}}{{t + 1}}\) ,则 \({h^\prime }(t) = \frac{{{t^2} + 1}}{{t{{(t + 1)}^2}}} > 0\),
∴ \(h(t)\) 在 \((0,1)\) 上单调递增,
则 \(h(t) < h\left( 1 \right) = 0\) ,即 \({\rm{ln}}t < \frac{{t - 1}}{{t + 1}}\) ,所以原不等式 \(g({x_1}) - g({x_2}) < (2b - 1)({x_1} - {x_2})\) 成立.
参考答案:令 \(g\left( x \right) = f\left( x \right) - x = \ln x + 2{x^2} - x - 2\left( {x > 0} \right)\) ,
所以 \(g'\left( x \right) = \frac{1}{x} + 4x - 1 \geqslant 2\sqrt {\frac{1}{x} \cdot 4x} - 1 = 3 > 0\) ,
所以函数 \(g\left( x \right)\) 在\(\left( {0, + \infty } \right)\) 上单调递增,
因为 \({x_1}\),\({x_2}\) 是两个正数,且 \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) \geqslant {x_1} + {x_2}\)
所以 \(g\left( {{x_1}} \right) + g\left( {{x_2}} \right) \geqslant 0\),
不妨设 \({x_1} \leqslant {x_2}\),
当 \({x_1} > \frac{1}{2}\) 时,命题 \({x_1} + {x_2} > 1\) 显然成立,得证.
当 \(0 < {x_1} \leqslant \frac{1}{2}\) 时,令 \(F(x) = g(x) + g(1 - x),\left( {0 < x \leqslant \frac{1}{2}} \right)\)
所以 \(F'(x) = \frac{1}{x} + 4x - 1 - \frac{1}{{1 - x}} + 4x - 3 = \frac{{{{(1 - 2x)}^3}}}{{x(1 - x)}},\)
所以当\(x\in (0,\frac {1} {2}]\)时, \(1-2x\geqslant 0,1-x>0\) ,故 \(F'(x) \geqslant 0,\)
所以函数 \(F(x)\) 在\(x\in (0,\frac {1} {2}]\)上单调递增,
所以 \(F(x) \leqslant F\left( {\frac{1}{2}} \right) = - 2\ln 2 - 4 < 0,\)即 \(g(x) + g(1 - x) < 0\) ,
所以 \(g\left( {{x_1}} \right) < - g\left( {1 - {x_1}} \right)\) ,
因为 \(g({x_1}) \geqslant - g({x_2})\) ,所以 \( - g({x_2}) \leqslant g({x_1}) < - g(1 - {x_1})\)
所以 \(g({x_2}) > g(1 - {x_1})\),
因为函数 \(g\left( x \right)\) 在 \(\left( {0, + \infty } \right)\) 上单调递增,
所以 \({x_2} > 1 - {x_1}\) ,即 \({x_1} + {x_2} > 1\) .
综上, \({x_1} + {x_2} > 1\) ,证毕.
参考答案:\({f}^{\, '}\left ( {x} \right )={e}^{x}-x-a\),令 \(g\left ( {x} \right )={f}^{\, '}\left ( {x} \right )\) ,则\({g}^{\, '}\left ( {x} \right )={e}^{x}-1\)
所以\(g\left ( {x} \right )\)在\(\left ( {-\infty ,0} \right )\)上单调递减,在\(\left ( {0,\infty } \right )\)上单调递增
当\(a\leq 1\)时,\(g\left ( {x} \right )_{\text{min}}=g\left ( {0} \right )=1-a\geq 0\),即 \({f}^{\, '}\left ( {x} \right )\geq 0\) ,所以\(f\left ( {x} \right )\)在\(\text{R}\)上递增.
不妨设\({x}_{1}<{x}_{2}\),则 \({x}_{2}>0\)
要证: \({x}_{1}+{x}_{2}<0\)
只需证: \({x}_{1}<-{x}_{2}\)
只需证: \(f\left ( {{x}_{1}} \right )<f\left ( {{-x}_{2}} \right )\)
只需证: \(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\)
令 \(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {-x} \right )-2\left ( {x>0} \right )\),\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )-{f}^{\, '}\left ( {-x} \right )={e}^{x}-{e}^{-x}-2x\)
\({F}^{\, ''}\left ( {x} \right )={e}^{x}+{e}^{-x}-2>0\),所以\({F}^{\, '}\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,有\({F}^{\, '}\left ( {x} \right )>{F}^{\, '}\left ( {0} \right )=0\)
所以\(F\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,即\(F\left ( {x} \right )>F\left ( {0} \right )=0\),故\(F\left ( {{x}_{2}} \right )>0\),即\(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\),所以\({x}_{1}+{x}_{2}<0\).
参考答案:先证: \(\ln {x}>\frac {2\left ( {x-1} \right )} {x+1}\left ( {x>1} \right ),\ln {x}<\frac {2\left ( {x-1} \right )} {x+1}\left ( {0<x<1} \right )\)
不妨设\(0<{x}_{1}<\frac {1} {a}{<x}_{2}\)
\(\frac {{x}_{2}} {\frac {1} {a}}=a{x}_{2}>1⇒\ln {\left ( {a{x}_{2}} \right )}>\frac {2\left ( {a{x}_{2}-1} \right )} {a{x}_{2}+1}⇔{a}^{2}{x}^{2}_{2}+\left ( {a\ln {a-a}} \right ){x}_{2}+\ln {a+2>0}\)①
\(\frac {{x}_{1}} {\frac {1} {a}}=a{x}_{1}<1⇒\ln {\left ( {a{x}_{1}} \right )}<\frac {2\left ( {a{x}_{1}-1} \right )} {a{x}_{1}+1}⇔{a}^{2}{x}^{2}_{1}+\left ( {a\ln {a-a}} \right ){x}_{1}+\ln {a+2<0}\)②
①-②:\({a}^{2}\left ( {{x}^{2}_{2}-{x}^{2}_{1}} \right )+\left ( {a\ln {a-a}} \right )\left ( {{x}_{2}-{x}_{1}} \right )>0\)则\({x_1}{\rm{ + }}{x_2} > \frac{{1 - \ln a}}{a}\)
第330题
若
参考答案:\(f\left ( {x} \right )\) 的定义域为 \((0,+\infty )\) ,
\(f'(x) = \left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right){{\rm{e}}^x} - \frac{1}{x} + 1\)\( = \frac{1}{x}\left( {1 - \frac{1}{x}} \right){{\rm{e}}^x} + \left( {1 - \frac{1}{x}} \right) = \frac{{x - 1}}{x}\left( {\frac{{{{\rm{e}}^x}}}{x} + 1} \right)\)
令 \(f(x) = 0\),得 \(x = 1\)
当 \(x\in (0,1),f'(x)<0,f(x)\) 单调递减
当 \(x\in (1,+\infty ),f'(x)>0,f(x)\) 单调递增 \(f(x) \geqslant f(1) = {\rm{e}} + 1 - a\) ,
若 \(f\left ( {x} \right )\geq 0\), 则 \({\rm{e}} + 1 - a \geqslant 0\),即 \(a \leqslant {\rm{e}} + 1\)
所以 \(a\) 的取值范围为 \((-\infty ,e+1]\)
解析:
第331题
证明:若
参考答案:由题知, \(f\left( x \right)\) 一个零点小于 1,一个零点大于 1
不妨设 \({x_1} < 1 < {x_2}\)
要证 \({x_1}{x_2} < 1\),即证 \({x_1} < \frac{1}{{{x_2}}}\)
因为 \({{x}_{1}},\frac {1} {{x}_{2}}\in (0,1)\), 即证 \(f\left( {{x_1}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)
因为 \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\), 即证 \(f\left( {{x_2}} \right) > f\left( {\frac{1}{{{x_2}}}} \right)\)
设\(g\left ( {x} \right )=f\left ( {x} \right )-f\left ( {\frac {1} {x}} \right )\left ( {x>1} \right )\),则\(g'\left ( {x} \right )=f'\left ( {x} \right )-\frac {1} {{x}^{2}}f'\left ( {\frac {1} {x}} \right )=\frac {\left ( {x-1} \right )\left ( {{e}^{x}+x-x{e}^{\frac {1} {x}}-1} \right )} {{x}^{2}}\)
下证: \(h\left ( {x} \right )={e}^{x}+x-x{e}^{\frac {1} {x}}-1>0\left ( {x>1} \right )\)
\({h}^{'}\left ( {x} \right )={e}^{x}+1-{e}^{\frac {1} {x}}+x{e}^{\frac {1} {x}}>0\) ,所以 \(h\left ( {x} \right )>h\left ( {1} \right )=0\)即 \(g'(x) > 0\)
所以 \(g(x)\) 在 \((1,+\infty )\) 单调递增
即 \(g(x) > g(1) = 0\) 即证
法二:令\(t=\frac {{e}^{x}} {x}\),\(f\left ( {x} \right )=\frac {{e}^{x}} {x}-\ln {x+x-a=\frac {{e}^{x}} {x}}+\ln {\frac {{e}^{x}} {x}}-a\) 有两个零点等价于 \(t-\ln {t-a=}0\) 有两个零点
又\(\ln {t}=x-\ln {x}\),则\(\left \{ \begin{gathered} {\ln {t}={x}_{1}-\ln {{x}_{1}}} \\ {\ln {t}={x}_{2}-\ln {{x}_{2}}} \end{gathered} \right .\),所以\({x}_{1}-\ln {{x}_{1}}={x}_{2}-\ln {{x}_{2}}\)
由对数均值不等式可得\(\sqrt {{x}_{1}{x}_{2}}<\frac {{x}_{1}{-x}_{2}} {\ln {{x}_{1}-\ln {{x}_{2}}}}=1\),即 \({x_1}{x_2} < 1\) .
第332题
已知函数\(f\left ( {x} \right )=\ln {x}-ax\)有两个零点\({x}_{1}<{x}_{2}\),求证:\({x}_{1}{x}_{2}>{e}^{2}\).
参考答案:见解析
解析:
法一:分析构造法
由\(f\left ( {x} \right )=\ln {x}-ax⇔a=\frac {\ln {x}} {x}\),令\(g\left ( {x} \right )=\frac {\ln {x}} {x}-a\),有\(g\left ( {{x}_{1}} \right )=g\left ( {{x}_{2}} \right )=0\),\({g}^{\, '}\left ( {x} \right )=\frac {1-\ln {x}} {{x}^{2}}\),则\(g\left ( {x} \right )\)在\(\left ( {0,e} \right )\)上递增,\(\left ( {e,+\infty } \right )\)上递减
不妨设\(1<{x}_{1}<e<{x}_{2}\)
要证: \({x_1}{x_2} > {e^2}\) ,只需证:\({x}_{1}>\frac {{e}^{2}} {{x}_{2}}\),只需证:\(g\left ( {{x}_{1}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\),只需证: \(g\left ( {{x}_{2}} \right )>g\left ( {\frac {{e}^{2}} {{x}_{2}}} \right )\) ,
\(F\left ( {x} \right )=g\left ( {x} \right )-g\left ( {\frac {{e}^{2}} {x}} \right )\left ( {x>e} \right )\) , \({F}^{\, '}\left ( {x} \right )={g}^{'}\left ( {x} \right )-{\frac {{e}^{2}} {{x}^{2}}g}^{,}\left ( {\frac {{e}^{2}} {x}} \right )=\frac {\left ( {\ln {x-1}} \right )\left ( {{x}^{2}-{e}^{2}} \right )} {{e}^{2}{x}^{2}}\)
则\(F\left ( {x} \right )>F\left ( {e} \right )=0\),即证。
法二:构造一元偏差函数
要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\) ,由 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\) 只需证\({x}_{1}+{x}_{2}>\frac {2} {a}\)
构造函数\(F\left ( {x} \right )=f\left ( {\frac {1} {a}+x} \right )-f\left ( {\frac {1} {a}-x} \right )\left ( {x>\frac {1} {a}} \right )\),易证。
法三:对数均值不等式
因为 \(f\left( x \right)\) 有两个相异的零点,又由于 \(x > 0\) ,故不妨设令 \({x_1} > {x_2} > 0\) ,
且有 \(\ln {x_1} = a{x_1}\) , \(\ln {x_2} = a{x_2},\)
\(\therefore \ln {x_1} + \ln {x_2} = a\left( {{x_1} + {x_2}} \right),\ln {x_1} - \ln {x_2} = a\left( {{x_1} - {x_2}} \right)\) ,
要证 \({x_1}{x_2} > {{\rm{e}}^2} \Leftrightarrow \ln \left( {{x_1}{x_2}} \right) > 2 \Leftrightarrow \ln {x_1} + \ln {x_2} > 2\)
\( \Leftrightarrow ({x_1} + {x_2})\frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > 2 \Leftrightarrow \frac{{\ln {x_1} - \ln {x_2}}}{{{x_1} - {x_2}}} > \frac{2}{{{x_1} + {x_2}}}\)
\( \Leftrightarrow \ln {x_1} - \ln {x_2} > \frac{{2\left( {{x_1} - {x_2}} \right)}}{{{x_1} + {x_2}}} \Leftrightarrow \ln \frac{{{x_1}}}{{{x_2}}} > \frac{{2\left( {\frac{{{x_1}}}{{{x_2}}} - 1} \right)}}{{\frac{{{x_1}}}{{{x_2}}} + 1}}\)
令 \(t = \frac{{{x_1}}}{{{x_2}}}\) ,则 \(t > 1\) ,所以只要证明 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}},t > 1\) 时恒成立,
令 \(g\left( t \right) = \ln t - \frac{{2\left( {t - 1} \right)}}{{t + 1}}\),\(t > 1\)
\({\rm{g'}}\left( t \right) = \frac{1}{t} - \frac{4}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{{\left( {t - 1} \right)}^2}}}{{t{{\left( {t + 1} \right)}^2}}},\) 由于已知 \(t > 1\therefore g'\left( t \right) > 0\) 恒成立,
所以 \(g\left( t \right)\) 在 \((1, + \infty )\) 递增, \(\therefore g\left( t \right) > g\left( 1 \right) = 0\)
所以 \(t > 1\) 时, \(g\left( t \right) > 0\) 恒成立,即 \(\ln t > \frac{{2\left( {t - 1} \right)}}{{t + 1}}\) 恒成立,从而证明 \({x_1}{x_2} > {e^2}\).
法四:比值代换
令 \({t}_{1}=\ln {{x}_{1}}\),\({t}_{2}=\ln {{x}_{2}}\)
由\(\ln {{x}_{1}}=a{{x}_{1}}\), \(\ln {{x}_{2}}=a{{x}_{2}}\) 得 \({t}_{1}=a{e}^{{t}_{1}}\) ,\({t}_{2}=a{e}^{{t}_{2}}\),\(\therefore \frac {{t}_{1}} {{t}_{2}}={e}^{{t}_{2}-{t}_{1}}\)
要证\({x}_{1}{x}_{2}>{e}^{2}⇔\ln {\left ( {{x}_{1}{x}_{2}} \right )>2⇔\ln {{x}_{1}}}+\ln {{x}_{2}}>2⇔{t}_{1}+{t}_{2}>2\)
令\(k=\frac {{t}_{2}} {{t}_{1}}>1\),则 \({t}_{2}-{t}_{1}=\ln {k}\)
\(\therefore {t}_{1}=\frac {\ln {k}} {k-1}\),\({t}_{2}=\frac {k\ln {k}} {k-1}\),则\({t}_{1}+{t}_{2}=\frac {\left ( {k+1} \right )\ln {k}} {k-1}\)
只需证:\(\ln {k>\frac {2\left ( {k-1} \right )} {k+1}}\left ( {k>1} \right )\)同理法三
参考答案:见解析
解析:
法一:构造一元偏差函数
令
不妨设
显然
法二:比值代换
由
不妨设
要证:
令
法三:对数均值不等式
设
①-②得:
根据对数平均值不等式
参考答案:\((-\infty ,0]\)
参考答案:\([-\frac {1} {e},+\infty )\)
参考答案:\([\frac {1} {e}+2,+\infty )\)
参考答案:\(\sqrt {e}\)
第338题
若存在
参考答案:\(\left ( {1,+\infty } \right )\)
第339题
已知
参考答案:\(e\)
解析:
参考答案:见解析
解析:
由题意可知,存在
令
令
令
所以,函数
所以,函数
所以,当
当
所以,