“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知函数 \(f\left( x \right) = \frac{{{e^x}}}{x} - \ln x + x - a\)



\(f\left ( {x} \right )\geq 0\),求\(a\)的取值范围;




知识点:第五章 一元函数的导数及其应用


参考答案:\(f\left ( {x} \right )\) 的定义域为 \((0,+\infty )\) ,

\(f'(x) = \left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right){{\rm{e}}^x} - \frac{1}{x} + 1\)\( = \frac{1}{x}\left( {1 - \frac{1}{x}} \right){{\rm{e}}^x} + \left( {1 - \frac{1}{x}} \right) = \frac{{x - 1}}{x}\left( {\frac{{{{\rm{e}}^x}}}{x} + 1} \right)\)

令 \(f(x) = 0\),得 \(x = 1\)

当 \(x\in (0,1),f'(x)<0,f(x)\) 单调递减

当 \(x\in (1,+\infty ),f'(x)>0,f(x)\) 单调递增 \(f(x) \geqslant f(1) = {\rm{e}} + 1 - a\) ,

若 \(f\left ( {x} \right )\geq 0\), 则 \({\rm{e}} + 1 - a \geqslant 0\),即 \(a \leqslant {\rm{e}} + 1\)

所以 \(a\) 的取值范围为 \((-\infty ,e+1]\)


解析:



进入考试题库