“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)



已知函数\(f\left ( {x} \right )={e}^{x}-\frac {1} {2}{x}^{2}-ax,a\in \text{R}\)\(a\leq 1\)时,若\({x}_{1}≠{x}_{2}\)\(f\left ( {{x}_{1}} \right )+f\left ( {{x}_{2}} \right )=2\)



证明:\({x}_{1}+{x}_{2}<0\)






知识点:第五章 一元函数的导数及其应用


参考答案:\({f}^{\, '}\left ( {x} \right )={e}^{x}-x-a\),令 \(g\left ( {x} \right )={f}^{\, '}\left ( {x} \right )\) ,则\({g}^{\, '}\left ( {x} \right )={e}^{x}-1\)

所以\(g\left ( {x} \right )\)在\(\left ( {-\infty ,0} \right )\)上单调递减,在\(\left ( {0,\infty } \right )\)上单调递增

当\(a\leq 1\)时,\(g\left ( {x} \right )_{\text{min}}=g\left ( {0} \right )=1-a\geq 0\),即 \({f}^{\, '}\left ( {x} \right )\geq 0\) ,所以\(f\left ( {x} \right )\)在\(\text{R}\)上递增.

不妨设\({x}_{1}<{x}_{2}\),则 \({x}_{2}>0\)

要证: \({x}_{1}+{x}_{2}<0\)

只需证: \({x}_{1}<-{x}_{2}\)

只需证: \(f\left ( {{x}_{1}} \right )<f\left ( {{-x}_{2}} \right )\)

只需证: \(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\)

令 \(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {-x} \right )-2\left ( {x>0} \right )\),\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )-{f}^{\, '}\left ( {-x} \right )={e}^{x}-{e}^{-x}-2x\)

\({F}^{\, ''}\left ( {x} \right )={e}^{x}+{e}^{-x}-2>0\),所以\({F}^{\, '}\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,有\({F}^{\, '}\left ( {x} \right )>{F}^{\, '}\left ( {0} \right )=0\)

所以\(F\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,即\(F\left ( {x} \right )>F\left ( {0} \right )=0\),故\(F\left ( {{x}_{2}} \right )>0\),即\(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\),所以\({x}_{1}+{x}_{2}<0\).

进入考试题库