“微信扫一扫”进入题库练习及模拟考试
已知函数
证明:
参考答案:\({f}^{\, '}\left ( {x} \right )={e}^{x}-x-a\),令 \(g\left ( {x} \right )={f}^{\, '}\left ( {x} \right )\) ,则\({g}^{\, '}\left ( {x} \right )={e}^{x}-1\)
所以\(g\left ( {x} \right )\)在\(\left ( {-\infty ,0} \right )\)上单调递减,在\(\left ( {0,\infty } \right )\)上单调递增
当\(a\leq 1\)时,\(g\left ( {x} \right )_{\text{min}}=g\left ( {0} \right )=1-a\geq 0\),即 \({f}^{\, '}\left ( {x} \right )\geq 0\) ,所以\(f\left ( {x} \right )\)在\(\text{R}\)上递增.
不妨设\({x}_{1}<{x}_{2}\),则 \({x}_{2}>0\)
要证: \({x}_{1}+{x}_{2}<0\)
只需证: \({x}_{1}<-{x}_{2}\)
只需证: \(f\left ( {{x}_{1}} \right )<f\left ( {{-x}_{2}} \right )\)
只需证: \(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\)
令 \(F\left ( {x} \right )=f\left ( {x} \right )+f\left ( {-x} \right )-2\left ( {x>0} \right )\),\({F}^{\, '}\left ( {x} \right )={f}^{\, '}\left ( {x} \right )-{f}^{\, '}\left ( {-x} \right )={e}^{x}-{e}^{-x}-2x\)
\({F}^{\, ''}\left ( {x} \right )={e}^{x}+{e}^{-x}-2>0\),所以\({F}^{\, '}\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,有\({F}^{\, '}\left ( {x} \right )>{F}^{\, '}\left ( {0} \right )=0\)
所以\(F\left ( {x} \right )\)在\(\left ( {0,+\infty } \right )\)上递增,即\(F\left ( {x} \right )>F\left ( {0} \right )=0\),故\(F\left ( {{x}_{2}} \right )>0\),即\(2-f\left ( {{x}_{2}} \right )<f\left ( {{-x}_{2}} \right )\),所以\({x}_{1}+{x}_{2}<0\).